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INTRODUCTION

The effects which solar activity has on the various layers of the earth's
atmosphere, particularly the ionosphere, play an important part in our
daily life. Some of these effects, to name only a few, are variations in
radio-communication conditions, disastrous interruptions of radio com-
munication, geomagnetic storms and disturbances, changes in climatic
conditions, and polar auroras. We will not consider these subjects in
detail here, since such a comprehensive study is not the object of this
book and since the interested reader can find the relevant information
elsewhere, It should be noted, however, that as the sun-earth problem
becomes studied more and more the number of these related questions
must increase.

A normal economic life for a country is impossible without advance
knowledge of the conditions which will prevail in the various atmospheric
levels at any given time. However, since these layers are affected by
solar activity, the level of this activity must also be calculated in advance,
This is particularly important for the prediction of conditions in the iono-
sphere, which is the part of the atmosphere affected directly by solar activ-
ity. Consequently, the development of methods for forecasting solar activ-
ity is of primary importance in solving a number of problems related to the
national economy.

Obviously, the more basic knowledge we have about any given phenome-
non, the simpler it is to predict it. In this respect, however, we find our-
selves in a very complicated position. Astrophysical and radioastronomical
observations of the sun enable us to study only the solar surface and solar
atmosphere., Thus, when describing the internal structure of the sun, we
must rely almost exclusively on hypotheses. Moreover, since knowledge
concerning the internal solar structure and the processes occurring in the
solar interior is not available, it is impossible to explain the mechanism of
solar activity, Although some progress has recently been made in this di-
rection, a general theory, based to a large extent on the various hypotheses,
has still not been formulated.

Therefore, given the present state of knowledge of solar activity, solar
scientists must use empiricostatistical methods of prediction. This in turn
means that long series of similar observations of the various solar forma-
tions must be available. Until recently, most such observations were
classified according to various solar-activity indexes which do not satisfy
rigorous physical standards. The two longest of these series are the Zurich
series of Wolf numbers, or relative spot numbers (starting with 1749), and
the Greenwich series of sunspot-group areas (starting with 1874). In actual
practice, these are the only two indexes that can be used to predict solar
activity, and so only these indexes will be discussed here., It should be
noted, by the way, that comparisons with geophysical indexes have shown



that, to a rough approximation, the Wolf numbers mainly characterize the
ultraviolet [wave] component of solar radiation, and the spot areas mainly
determine the corpuscular component.

Relative sunspot numbers were introduced by Wolf in Zurich in 1849 and
are therefore often called Wolf numbers. They are usually defined as

W =k(10g}f), (1)

where g is the number of sunspot groups and f is the total number of spots
in all the groups. The coefficient k is determined from a comparison of
different observation series. It depends on the visibility conditions, the
apparatus used, and the method of observation, as well as on such subjective
factors as observer fatigue, the way in which the sunspots are combined into
groups, and the nucleus count.

All these features of Wolf numbers indicate that this solar-activity index
is a fairly subjective one., However, while taking this into account, the
Zurich researchers have made every effort to conserve the Zurich system
of relative sunspot numbers. To this end long-term simultaneous sunspot
observations have been organized by the chief observer and his successor
and the results of these observations compared. It should be mentioned
that in Wolfer's time the value of the coefficient & was changed. Instead
of Wolf's value of k=1, Wolfer gave k=0.6. The coefficient was subsequently
kept constant, the above change being due to an alteration in the method for
counting sunspot nuclei.

It may be questioned whether the Zurich system, with all its precautions,
ensures homogeneity of the Wolf numbers. Various doubts as to this have
recently been expressed. The problem is that, as Slonim has pointed out,
the coefficient k can change with time even for the same experienced ob-
server, and that this change can occur in a most unexpected manner. In
order to analyze the homogeneity of a series of analogous observations, at
least three such series are required. A sunspot series in addition to the
Zurich series has been provided by the Soviet solar service, but the latter
series only covers a period of slightly more than 20 years. The Freiburg
series of Wolf numbers, on the other hand, is much shorter. Moreover,
it was obtained by averaging the daia of various observatories and thus dif-
fers essentially from the Zurich and Soviet relative-sunspot series,

Vitinskii's comparison of the Zurich and Soviet series of Wolf numbers
has shown that either one of these series or both of them are not strictly
homogeneous. A more exact decision concerning the homogeneity of these
series cannot be made at present, since a sufficiently long third series is
still not available, Nevertheless, the above factor is an indication that con-
versions from the Soviet system to the Zurich system can be made only with
great caution, This point deserves special attention, since mostof the cyclic
regularities which are of significance for solar-activity forecasting have been
obtained on the basis of the data of the Zurich system, which is considered
as the international system,

Since the Zurich series of Wolf numbers covers over 200 years and shows
a high correlation with various geophysical indexes (especially ionospheric
characteristics), it is very important that this series be continued. At the
same time, it would be very interesting to consider certain problems which
might assist an evaluation of the reliability of the Zurich numbers. Some of
these problems are: criteria for the discrimination of sunspot groups, the



effect of the visibility conditions on Wolf-number determination, and the
influence which the limb effect has on these determinations.

The last problem has been considered by several authors, in particular
by Gleissberg et al. These studies have shown that the limb effect acts
differently on groups with different "'populations" (with different numbers
of sunspots). Consequently, the central zone is the most reliable for sun-
spot counting. To the best of our knowledge, no adequate studies of the
effect of visibility conditions on Wolf-number determination have been
made so far, and such studies will be impossible unless the atmospheric
conditions accompanying sunspot observations are recorded.

It is clear from the preceding discussion that daily Wolf numbers are
not very significant, However, monthly and yearly relative sunspot num-
bers are quite suitable both for comparison with the various geophysical
indexes and for forecasting. This is particularly true for the yearly values.
For monthly Wolf numbers the instability of coefficient k¥ may produce devia-
tions of 20 to 25% in either direction.

Table I of the Appendix lists the Zurich Wolf numbers for each month
from 1749 to 1961. In the following, these data will be referred to as the
observed numbers, since they have been obtained by a simple averaging of
the values observed during a month or during a year, as contrasted with
the smoothed values of the relative sunspot numbers.

The Wolf numbers are generally smoothed according to the formula

W‘=%(W.--e+ W.'-si-z*- e+ Wis 4 Wi+ W«-:z-l---- +W¢4)‘ (2)
This formula is used in order to eliminate the effects of terrestrial atmos-
pheric conditions. Some authors, such as Vsekhsvyatskii, have suggested
that an annual variation of the Wolf numbers exists. However, this proposi-
tion has recently been questioned. Nevertheless, since many forecasting
regularities have been determined on the basis of smoothed relative sunspot
numbers, we will list the values of these numbers for each month from 1749
to 1960 in Table II of the Appendix.

The definite subjectivity of the Wolf numbers led some researchers study-
ing the ionosphere to try to avoid solar indexes describing the ultraviolet
radiation of the sun and to substitute ionospheric solar-activity indexes for
them. Not only does this series cover a period of less than 20 years, but
also such an attempt itself represents a kind of self-deception, since iono-
spheric indexes are also influenced by the various effects characterizing the
terrestrial atmosphere, so that one of the most essential difficulties has not
been overcome.

Finally, let us mention briefly Kopecky's interpretation of the Wolf num-
bers. This is of more significance, in that two new indexes are introduced,
namely the theoretical frequency of occurrence of spot groups f,, and the
average theoretical group lifetimeT,. These indexes will not be considered
here in detail, butitshouldbe noted that they were obtained from the Green-
wich data using the spot groups appearing in the central zone and assuming
uniform distribution of groups over the longitude. Kopecky showed that
W~f,T,, and that the first factor f, exhibits almost perfect 11-year period-
icity, while the second factor T, does not. Consequently, it follows that the
Wolf numbers reflect two different processes, which appear to be super-
posed on one another.




Before going on to the second fundamental index of solar activity, the
sunspot-group area, it should be noted that the Wolf numbers are deter-
mined only for the visible hemisphere of the sun. Therefore, when these
numbers are used it is tacitly assumed that an analogous spot pattern ex-
ists on the unobservable hemisphere as well.

Recently, attempts have been made to obtain what are known as global
relative sunspot numbers. Becker and Kiepenheuer used visibility func-
tions which they derived for various types of spot groups in order to plot
the curves for group development, and they read from these curves the
spot numbers during the 14-day period when the spots were invisible, For
groups with short lifetimes, different probability assumptions had to be
made, Then, when the daily results were added up, they obtained global
sunspot numbers, these being the number of spots on the entire solar sur-
face, However, since this procedure is quite difficult and since the global
numbers are purely hypothetical quantities, therefore they have not been
used in practice up to the present.

The spot-group areas, which will now be considered, are also deter-
mined only for the visible hemisphere of the sun, This index of solar ac-
tivity was first suggested by Carrington in Greenwich in 1874. In contrast
to the Wolf numbers, which are determined both photographically and visu-
ally, the spot areas are measured only from photographs. All the areas
measured are referred to the solar center.

The spot areas are usually given in millionth parts of the solar disk or
in millionth parts of the visible solar hemisphere, In the latter case the
curvature of the solar surface is taken into consideration. It should be
noted that in general the area determined is that of umbra plus penumbra,
and this is the index which has become the most popular for practical ap-
plications. Occasionally, however, a study of the development of individual
groups is based on the areas of the spot nuclei, which are measured at
Greenwich, Finally, the area of the largest spot in a group, a quantity
which is determined by the stations of the Soviet solar service, can also be
used for this purpose.

The spot area represents a more objective index than the Wolf numbers.
However, in the first place, the spot areas apparently refiect the other com-
ponent of solar radiation, the corpuscular component, while, in the second
place, the spot-~area series is less than one-half as long as the spot-number
series, Therefore, with due allowance to the advantages of this index, its
forecasting value is much lower,

In one case, however, sunspot areas represent indispensible indexes,
this case being when the asymmetry of sunspot-formation activity in the
northern and southern hemispheres is studied. This is true because Wolf
numbers are found separately for the two hemispheres only within one 11-
year cycle, while spot areas have been determined continuously [for the
two hemispheres] from 1874 to the present. This makes it possible, on
the basis of certain features of sunspot-area asymmetry, to arrive at some
interesting forecasting conclusions.

We have already mentioned that the Greenwich series is the longest exist-
ing series of sunspot-group areas. Sunspot areas are also determined by the
Soviet solar service, and Vitinskii's compari‘-.on of the two series indicates
that they are homogeneous and that thus conversion from one series to the
other does not involve any special difficulty.



With all its advantages, the spot-area system has two essential defects,
and these also apply to the Wolf numbers. First, the areas are influenced
by the visibility conditions and, second, they are influenced by the limb ef-
fect. Since in the case of spot areas photographs are made, thus a change
in photo contrast cannot but influence the accuracy of area measurements
for individual spots, especially in the penumbra. If the size of the disk,
which depends on the particular insirument used, is not large enough, then
under poor atmospheric conditions some of the smaller spots may even be
lost. Sunspot areas near the solar limb can be measured only with a high
degree of uncertainty, so that when determining the group areas in this re-
gion (in millionths of the solar hemisphere), where sec p is very large, the
measurement errors may be quite considerable.

Thus, monthly and yearly averages are preferred to the daily values of
the total spot area for the entire disk. In the following, the word "total
will not actually be used, but it will be the total area which is implied. In
addition to the sunspot areas for the entire solar disk, spot areas for the
northern and southern hemispheres, generally for one rotation of the sun,
are also introduced occasionally.

There is a definite statistical correlation between the Wolf numbers W
and the sunspot areas § (the correlation coefficient is about +0.85). On the
average, this correlation may be expressed as

S§=16.7W. (3)

Let us now consider briefly some other solar-activity indexes which are
closely related to the sunspot areas. In their study of certain special fea-
tures of spot-group development during the various phases of the 11-year
solar cycle, Eigenson and Mandrykina used the average maximum area §
of the spot groups as an index. This index is closely related to Kopecky's
quantity T,. It should be noted, however, that in some cases the determina-
tion of §, for individual spot groups is very unreliable, and this is particu-
larly true when the maximum area is attained near the solar limb or in the
unobservable hemisphere of the sun. Nevertheless, this uncertainty is not
greater than that for the index S, and thus there is no reason why the index
§”should be rejected. The index §, the average area of a sunspot group,
is also sometimes used for certain comparisons with geophysical phenomena.
Since S, and § have no particular prognostic value (at least, as far as the
sun is concerned), we will not discuss these indexes further.

At present, numerous solar indexes characterizing various phenomena
in the different layers of the solar atmosphere are available, Naturally,
it would be highly desirable to use these indexes to develop methods for
solar-activity prediction., However, unfortunately, the series of data re-
ferring to these indexes are rather short and, what is particularly signifi-
cant, discontinuous, Moreover, there is also serious doubt as to their
homogeneity. Because of these factors we are forced to disregard this
whole set of solar indexes, and only to refer to them occasionally for purely
qualitative evaluations of the situation.

In summarizing all the preceding discussion of solar-activity indexes, it
must be conceded that at present we actually have nothing better than em-
piricostatistical methods of Wolf-number prediction. The forecasting of
sunspot areas is mostly confined just to qualitative estimates. Moreover,
this situation also determines who can derive the main benefit from solar



forecasts. Now such forecasts are mainly used by radiophysicists. Mete=~
orologists and oceanologists, on the other hand, use Wolf-number fore-
casts only for certain qualitative estimates. This book will discuss these
empiricostatistical methods for forecasting solar activity, especially meth-
ods for forecasting the Wolf numbers,

Solar-activity forecasts can be divided into three groups: 1) short-
range, 2) long-range, and 3) ultralong-range.

Short-range forecasts have as their goal the calculation of certain solar
indexes several days in advance (a period less than one solar rotation).

This represents the most complicated problem, and so far no satisfactory
methods for short-range forecasting have been developed. Therefore, we
are restricted to a discussion of long-range-forecasting methods only
(including long-range and ultralong-range forecasts, as defined below). It
should be noted that the division into long-range and ultralong~-range fore-
casts is rather arbitrary, and that it was introduced due to differences in
the respective methods as they stand at present.

Long-range forecasts of solar activity include all forecasts referring
to the time included in one cycle. It is convenient to divide this group into
two subgroups, namely medium-period and long-period forecasts. Medium-
period forecasts include monthly and quarterly forecasts. This subgroup
has begun to be developed only during recent years; it is not distinguished
by any variety in methods, and the accuracy of medium-period forecasts
is correspondingly low. The main difficulty in developing medium-period
forecasts is that here fluctuational processes are involved. Although some
methods have been worked out for predicting the evolution of a fluctuation,
still it is virtually impossible at present to foresee the appearance of a
fluctuation. Consequently, at times when powerful fluctuations arise, such
forecasts have especially high errors.

The second subgroup of long~-range forecasts of solar activity includes
forecasts made a year or several years in advance., Some progress has
been made with respect to such predictions, particularly once the so-called
"superposition hypothesis' was refuted, a step which stimulated the detailed
study of intracycle regularities. Forecasts made a year or several years in
advance now have a fairly high accuracy. The fact that several different
methods for making such forecasts have been developed is aconsiderablead-
vantage, since the defects of the various methods appear to compensate for
one another.

Ultralong-range forecasts predict the situation over the next 11-year
solar cycle or over several future cycles. Such forecasts have always at-
tracted the attention of solar scientists, but have on the whole resulted
more often in failures than in successes. The reason for this is that regular
telescopic observations of the sun have been made for only a little more than
200 years, so that many higher-order cyclic regularities have probably re-
mained unknown to us. The difficulty is increased still more by the fact that
solar activity is not strictly periodic, since it is affected by a multiplicity of
perturbations. Nevertheless, some success has been achieved in this sphere
during the last decade.

In this book the above classification of solar-activity forecasts has been
adhered to, and the text has been divided as follows. Chapter I discusses
the principal regularities of solar activity, which will be made use of di-~
rectly in the subsequent discussion. Chapter II deals with long-range fore-
casis made a year or several years in advance. Chapter III discusses



medium-period long-range forecasts. Finally, Chapters IV and V deal
with methods of ultralong-range forecasting.

Naturally, this book cannot pretend to be an exhaustive presentation
of all existing methods of solar-activity forecasting. An attempt has been
made to select only the most important of these methods, on the assump-
tion that this information will be useful to heliophysicists, geophysicists,
and also to any others interested in sun-earth problems,

Finally, let us note too that some progress has recently been made to-
ward developing a theoretical method for forecasting the solar indexes.
In particular, Rubashev has made a contribution which is of unquestion-
able interest in this respect. Let us hope that in the near future these
studies will yield tangible results and that solar-activity forecasts will
be placed on a firm physical basis.



Chapter I
THE BASIC REGULARITIES OF SOLAR CYCLES
§ 1. General Remarks

Solar activity has attracted the attention of many investigators from
ancient times until the present. The first observations were fragmentary
and made with the naked eye, butlater, from the time (1610) when Galileo
used the telescope for solar observations, the studies became more and
more regular. However, almost 150 years still had to pass before the first
important regularities of solar activity were derived from these observa-
tions.

Since in the following the main emphasis will be on forecasts of the vari-
ous indexes connected with sunspots, this chapter will be devoted to a dis-
cussion of the principal regularities in sunspot activity. Many other active
solar formations, such as faculae, chromospheric flares, filaments, promi-
nences, regions of increased coronal-line emission, and radiospots, are all
mutually related, and they appear to constitute one single complex of solar
activity. The U and BM magnetic regions can also be included in this
complex.

If the magnetic regions are disregarded, sunspots constitute the cores
of the so-called active regions, or active centers, of the sun. It is the
presence of active solar regions which determines the actual level of solar
activity, We will consider sunspot activity from two aspects, temporal and
spatial. The temporal behavior of sunspots is particularly significant for
our purposes. Spatial considerations can also be employed in some fore-
casting procedures, and at any rate these are closely related to the tempo-
ral behavior of sunspots. In the following, therefore, the term "'solar
activity" will refer to sunspot activity only.

§ 2. The Schwabe-Wolf Law

The very first regular observations of sunspots showed that the number
of spots varies with timme. This was first observed by the Danish astro-
nomer Horrebow in the 1770's, on the basis of his solar observations be-
tween 1761 and 1769. Unfortunately, most of Horrebow's data were lost
in the shelling of Copenhagen during the Napoleonic wars, and his dis~
coveries were forgotten. This fact became known only after Wolf had
stated his law describing the variation of the sunspot numbers (Gleissberg,
1952),



In 1843, on the basis of 20 years of observations, the amateur astro-
nomer Schwabe established that solar activity varies with a period of about
10 years (Schwabe, 1844). This led Rudolph Wolf, the director of the Zurich
Observatory, to set up systematic observations of the variations in sunspot
activity. These observations then led to the discovery of the 11-year sun-
spot cycle,

Wolf showed that the numbers of sunspots, or more precisely the Wolf
numbers, are subject to cyclic fluctuations, with an average cycle duration
of 11.1 years, This very important regularity in solar activity is generally
called the Schwabe-Wolf law. It should be noted that this law is valid for
other active solar formations as well. It has been found that the length of
the sunspot cycle changes rather sharply from one cycle to another, and
that it can vary from 7.3 to 17.1 years.

The part of the cycle in which the sunspot number goes through a mini-
mum is called the epoch of sunspot minimum, while the part including the
maximum is called the epoch of sunspot maximum. An increase in solar
activity is represented by a rising curve and a decrease is represented by
a descending curve.

As mentioned in the Introduction, the relative sunspot numbers have been
regularly determined in Zurich since 1749. However, even the scanty ob-
servations made from 1610 to 1749 were sufficient to establish epochs of
maxima and minima for the sunspot cycle. Later, these epochs were de-
termined according to the variation of the smoothed monthly Wolf numbers,

TABLE 1

Epochs of extrema for 11-year sunspot cycle (Zurich data)

Epochs of minima Epochs of maxima
1610.8 1698.0 1784.7 1878.2 1615.5 1705.5 1788.1 1883.9
1619.0 1712.0 1798.3 1889.6 1626.0 1718.2 1805.2 1894.1
1634.0 1723.5 1810.6 1901.7 1639.7 1727.5 1816.4 1907.0
1645.0 1734.0 1823.3 1913.6 1649.0 1738.7 1829.9 1917.6
1655.0 1745.0 1833.9 1923.6 1660.0 1750.3 18317.2 1928.4
1666.0 1755.2 1843.5 1933.8 1675.0 1761.5 1848.1 1937.4
1679.5 1766.5 1856.0 1944.5 1685.0 1769.7 1860.1 1941.5
1689.5 1775.5 1867.2 1954.5 1693.0 1778.4 1870.6 1957.9

Table 1 shows the epochs of maxima and minima of the 11-year sunspot
cycles, compiled on the basis of the Zurich data for the years from 1610
to 1957,

The epochs of extrema for the 11-year sunspot cycle given in Table 1
were determined to the nearest tenth of a year. These data have been used
to derive various forecasting relations, and thus they are given here in their
original form. It should be noted, however, that cyclic curves plotted from
the monthly observed Wolf numbers are subject to strong fluctuations, and,
as shown by Vitinskii, the length of these fluctuations ranges from 3 months
to a year. Therefore, even the Zurich asironomers were forced in some
cases to introduce corrections into the epoch values obtained from the
smoothed monthly Wolf numbers. Chernosky has recently (1954) shown
that smoothing over a 5-month period gives much more satisfactory results
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than smoothing according to formula (2) in the Introduction. If is interest-
ing, in this respect, that 5 months is also the average duration of the fluctu-
ations in the relative sunspot numbers.

Taking all these factors into account, Vitinskii and Ikhsanov (1960) sug-
gested determining the epochs of extrema for the 11-year cycle to the near-
est 3 months, which is the minimum duration of a fluctuation, according to
the observed quarterly Wolf numbers (listed in Table III of the Appendix).
Two curves enveloping the peaks of the positive and negative fluctuations
were used for this, If both curves go through a maximum, then this point
corresponds to a maximum of the 11-year cycle, and the epoch of minimum
is determined analogously. If at a given point the curves have opposite
shapes, then the point represents only a strong fluctuation. Table 2 lists
the epochs of extrema obtained using this method. The Roman numerals

TABLE 2

Epochs of extrema for 11-year sunspot cycle {according to Vitinskii and lkhsanov)

Epochs of minima Epochs of maxima
IL— 1755 [I-1810 1— 1867 [—1924 i—1761 1—1817 II— 1870 11— 1928
Iil— 1766 II— 1823 [— 1879 IV—1933 IV—11769 II—1829 1— 1884 I — 1937
[—1775 11— 1834 | [V — 1889 II— 1944 II— 1778 [—1837 | III— 1893 11— 1947
II— 1784 III— 1843 | III— 1901 1I— 1954 [V— 1783 IV— 18417 IV—1905 IV—1957
I1—1798 |IlI—1855| II—1913 IV — 1204 I—1859 | 1I—1917

in Table 2 indicate the quarters of the year. Epochs of extrema have been
givenonly for thos~ 11-year solar cycles for which the Wolf numbers have
been determined.

According to the Zurich enumeration for the 11-year sunspot cycles, the
epoch of minimum for the 1st cycle occurred in 1755. Wolf numbers for
more than 18 cycles are now available, and Figure 1 shows the curve of
variation in yearly relative sunspot numbers for the 18 complete cycles and
for the elapsed part of the 19th cycle. The curve shows that different 11-
year solar cycles are characterized not only by different durations but also
by different intensities, as determined by the maximum Wolf numbers.

The relation between the main parameters describing the 11-year sun-
spot cycle was studied in detail by Waldmeier (1935), during the develop-
ment of his widely known "eruption' hypothesis of solar cyclicity, a theory
which will now be discussed at some length.

Let us first introduce some additional notation. Let 7 denote the dura-
tion in years of the rising branch of the curve for the 11-year cycle, and
let § denotie the duration of the descending branch, from the epoch of maxi-
mum to the year in which W=17.5; in addition, let Wy denote the Wolf num-
ber 5 years after the maximum of sunspot activity. Finally, let X, be the
sum of the smoothed monthly relative sunspot numbers over the ascending
branch, let X, be the sum of these numbers over the descending branch, and
let Wy be the maximum monthly Wolf number, According to Waldmeier, we
can now single out the following basic features of the sunspot curve.

a, The duration T of the ascending branch increases with a decrease in
the height Wy of the maximum. For even cycles (according to the Zurich
enumeration), this property can be expressed by the following relation:

11



logW,=2.69—0.17T. (1.1)
%+ 0.09 + 0.02
For odd cycles, we have the relation
log W,=2.48 —0.10T.
+ 0.10 £ 0.02
b. The quantity § increases with Wy
0=3.0-}-0.030w . (1.3)
+ 0.6 1 0.008
c. For an epoch 5 years after the sunspot maximum, we have the relation
W,=—11.44-0.29W (1.4)
+ 6.7 1+ 0.08

d. The statistical relations between the sums E, and Z,and the maximum
Wolf number Wy, have the form

(1.2)

3, =0.4W 2538, (1.5)
+32 + 340
= 5724 40.6W,, (1.6)
4600 + 5.9

e. Finally, it follows from formulas (1.1), (1.2), and (1.3) that the ratio
@=T/0® for the even cycles is

15.64 ~5.8110g Wy

0=—3g5500mw, (.7

while for the odd cycles it is

0 25.8—10.00 log Wy (1.8)
T 3.04-0.030W

The values of @ for different cycles range from 0.37 to 1.72, with an
average of 0,7. The rise of the cyclic curve is more rapid than the des-
cent only for cycles with average and high maximum relative sunspot num-
bers. For cycles with low W), the reverse seems to be true,

The above relations make it evident that the behavior of the cyclic sun-
spot curve is determined mainly by the parameter Wy. Consequently, the
time variation in sunspot activity F(t) has the form

Ft)y=F(t, W,). (1.9)

Stewart and Panofsky (1938) used Waldmeier's assumption that each
cycle can be considered as an individual eruption as the basis for an em-
pirical formula for F(f). They demonstrated that the variation of the cyclic
curve of relative sunspot numbers is approximated quite well by the ex-
pression

W =Fire, (1.10)

where § is the time interval in years between the given instant and the epoch
of minimum, while a, b, and F are constant for a given solar cycle. The
quantity F essentially represents the scale of the Wolf-number time base.

In deriving formula (1.10), Stewart and Panofsky used the Zurich data
for the epochs of minima and maxima, for the maximum smoothed monthly
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Wolf numbers, and for the yearly observed Wolf numbers, over 16 sun-
spot cycles. The constants a, b, and F were determined by different meth-
ods and were found to vary both according to the method used and accord-
ing to the cycle considered. It will not be necessary to discuss here the
methods employed; it will be enough just to give the table for the values of
a. b, and log F compiled by these authors. Let us note that in some cases a
and b are not given, since the figures obtained were meaningless.

TABLE 3

Main parameters of Stewart-Panofsky formula, for 16 solar cycles

1st method 2nd method 3rd method 4th and 5th methods
Cycle
number a ] e ] log F L] b L] ®
1 10.43 1.51 7.89 1.32 -0.763
2 3.44 1.03 3.75 1.07 +1.650 2.711 0.92 3.08 0.92
3 3.99 1.32 5.95 1.60 +1.390 1.20 0.76 2.30 0.76
4 2.41 0.68 3.35 0.79 +1.500 1.32 0.51 1.82 0.51
5 11.66 1.53 6.21 1.12 ~-0.233
6 10.80 1.711 12.30 1.83 -3.141 3.74 1.02 6.44 1.02
17 11.22 1.55 7.65 1.28 -0.682
8 3.97 1.15 4.86 1.27 +1.447 2.13 0.85 2.94 0.85
9 5.63 1.14 7.13 1.28 -0,103 2.06 0.71 3.49 0.71
10 3.97 0.91 4.88 1.01 +0,772 2.10 0.68 2.96 0.68
11 4.29 1.20 5.73 1.38 +1.095 1.61 0.76 2.1 0.76
12 7.07 1.31 4.62 1.07 +0.944
13 5.38 1.12 4.95 1,08 +0.823 8.10 1.37 6.58 1.37
14 4.88 0.97 4.14 0.89 +0.839 10.48 1.41 7.09 1.41
15 6.54 1.54 7.04 1.60 +0.550 4.36 1.27 5.38 1.27
16 6.20 1.20 3.92 0.96 +1.198

Table 3 (2nd method) indicates that b and logF can be expressed quite
well in terms of g as follows:

b=1.601oga-}0.03, (1.11)
logF = —0.537a 4- 3.63. (1.12)

Later authors who have attempted to find an analytical form for the
cyclic curve have mostly used expressions such as (1.10). In particular,
Gleissberg (1951a) gives an average curve of this type, with a=7,1832
and b=1.2013. Further investigations, however, caused Gleissberg to
divide all the solar cycles into three groups, in terms of intensity, and
then to determine constants a and b separately for each of these groups.

Granger recently (1957) devised a statistical model describing sun-
spot activity. In this model he showed that the cyclic curve can be rep-
resented quite accurately by the formula

W=f(@)g@)+el (1.13)

where f (z) is an amplitude factor which probably contains a long-period
fluctuation, and g(z) is a curve which may be approximated roughly by the
equation

g=02-'7¢1-73—0-¢l.. (1.14)
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repeated for different intervals. The term e, is a random function which
is on the average zero, Here, equation (1.14) represents a modification of
formula (1.10),

If we take into account that in the Stewart-Panofsky formula the quantity
Fis the scale of the time base for the Wolf number, then we have here a two-
parameter formula. Since @ and b are not independent of one another, some
authors have tried to replace this relation by a one-parameter formula (see,
for example, Thilring, 1955). However, there are many properties of solar
cyclicity which do not back up this, at first glance so attractive, simplifica-
tion. The problem is that the processes corresponding to the rising part of
the solar-cycle curve differ somewhat markedly from the processes corres-
ponding to the descending part of the curve, This is illustrated by the fact
that the correlations established for the rising part of the curve are much
better than those for the descending part. In the subsequent discussion some
other features of sunspot activity will be considered which support this
statement.

The studies of Xanthakis (1959) have shown that some of the properties of
the sunspot cycle depend on the length of the rising part of the curve. It is
apparently precisely this parameter that characterizes the shape of the cycle
curve, the maximum height, the fluctuation pattern, etc. The descending
part of the curve, on the other hand, seems to correspond to a process which
depends on the properties of the higher layers of the subphotosphere.

7leissberg (1949) tried to give a physical explanation of the Stewart-
Panofsky formula. He concluded that the rate of formation of new spots and
the rate of decay of existing spots are both proportional to the intensity of
solar activity., Moreover, he decided that the rate of formation of new spots
is inversely proportional to the time elapsed after the beginning of the cycle,
whereas the rate of sunspot decay is independent of time. Such an explana-
tion can hardly be accepted. Although the rate of formation of new spots
may possibly be proportional to the intensity of solar activity, still this does
not apply to the rate of variation of existing sunspots. This is evident, for
instance, from the fact that the product of the sunspot-group frequency times
the average group lifetime is proportional to the Wolf number (Kopecky,
1959).

The Schwabe-Wolf law can be formulated either for the entire sun or for
its northern and southern hemispheres separately. However, this will not
be gone into at this point, but will be reserved for the discussion, later in
the book, of the asymmetry of solar activity in the northern and southern
hemispheres. It should be observed, though, that the formulation of the
Schwabe-Wolf law is almost the same for the two solar hemispheres, and
differs only in certain minor details. At present, however, this is not im-
portant.

Finally, it should be mentioned that the Schwabe-Wolf law applies not
only to sunspot activity but to other types of solar activity as well. This
is equally true of another basic law describing solar activity, namely
Sporer's law, which will be discussed in the next section.
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$ 3. Spdrer's Law

Series of sunspot observations extending over many years have shown
that most sunspots appear between latitudes from +45° to +5°. Outside of
these regions, sunspots have been observed only very rarely, and these
have been mainly pores. The maximum latitude in which a pore has been
recorded is 71°. On the average, the width of the sunspot zone is about 20°.

The studies of Carrington (1858), and later the independent studies of
Spbrer (1881) and Maunder (1917), showed that the entire sunspot zone
shifts during the cycle from higher to lower heliographic latitudes. Usually,
the first sunspot groups in a given solar cycle appear at latitudes of about
30°, and at the end of the cycle the average latitude of the spot groups is
about 8°. Table 4 gives the Greenwich data for the average yearly helio-
graphic latitudes of sunspots from 1878to 1953,

TABLE 4

Average yearly heliographic latitudes of sunspots from 1878 to 1953 (Greenwich data)

Year [ Year [} Year v Year ’ Year ? Year .

1878 7°.58 1891 20231 1904 16157 1917 | 14163 1930 9:87 1943 [10°09
1879 21.96 1892 18.39 1905 13.10 1918 | 12.75 1931 8.31 1944 121.53
1880 19.64 1893 14.49 1906 13.99 1919 | 10.76 1932 8.32 1945 20.22
1881 18.30 1894 14.18 1907 12,12 1920 | 10.43 1933 10.56 1946 (20.00
1882 17.81 1895 13.54 1908 10.38 1921 7.90 1934 23.75 1947 (17.38
1883 13.06 1896 14.33 1909 9,71 1922 8.02 1935 23.30 1948 (14.19
1884 11.26 1897 7.96 1910 10.53 1923 | 15.26 1936 20.35 1949 (13.33
1885 11.77 1898 10.49 1911 6.49 1924 | 22.73 1937 17.02 1950 |13.41
1886 10.38 1899 9.54 1912 8.08 1925 | 20.20 1938 14.79 1951 |11.32
1887 8.44 1900 7.74 1913 23.23 1926 | 18.66 1939 13,42 1952 8.00
1888 17.39 1901 10.37 1914 21.79 1927 | 15.05 1940 11.17 1953 9.86
1889 11.61 1902 17.64 1915 18.717 1928 | 13.50 1941 10.38
1890 21.99 1903 19.94 1916 15.81 1929 | 10.51 1942 8.99

The data in Table 4 show that the rate of drift of a sunspot zone changes
during the cycle. On the average, this rate is highest during the increas-
ing part of the cycle and then it gradually decreases. In the epoch of sun-
spot maximum the average latitude of a sunspot zone is about 15°.

Spdrer's law is best illustrated using the ''butterfly' diagrams of
Maunder, which show the latitudes of all the sunspots, regardless of their
size, plotted on the corresponding time scale. Figure 2 shows the butter-
fly diagrams for the 12th through the 18th solar cycles (Zurich enumera-
tion). In addition to showing the drift of the sunspot zones, the butterfly
diagrams make it clear that low-latitude spots from the previous cycle
are generally observed near the epoch of sunspot minimum, simultaneously
with high-latitude sunspots of the new cycle. Consequently, the actual
lengih of a solar cycle is somewhat greater than the time between successive
epochs of minimum.

It should be noted, by the way, that it is rather difficult to differentiate
between the old and new sunspots in the epoch of minimum. However, such
a differentiation can be made quite reliably according to the magnetic polarity
of the spots, since, as Hale and Nicholson (1938) have shown, this polarity
changes from cycle to cycle,
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Gnevyshev (1944) showed that the Sporer curves can be translated along
the time axis in such a way that they will all coincide approximately with
one another. The scatter of points about the mean, on the curves of dif-
ferent cycles, is about 1°, a value which is within the margin of error for
determining the sunspot coordinates. This factor can be utilized for fore-
casting purposes.

Gleissberg (1958) studied the variation of the width of the sunspot zone
during the solar cycle. On the basis of an examination of the outer points
on the butterfly diagrams, he found that on the average the width of the
sunspot region varies, concomitantly with the cyclic curve, from 8° in the
epoch of minimum to 36° in the epoch of maximum, This being the case, it
is hardly possible to speak of a simple drift of the sunspot zone toward the
solar equator.

According to Kopecky (1958), spot groups appear at high heliographic
latitudes mostly in the epoch of high sunspot maxima, rather than at the
beginning of the 11-year cycle. This result is consistent with Gleissberg's
conclusions concerning the latitudinal width of the sunspot zone.

Recently, Becker (1959) has shown that a second, high-latitude, sunspot
zone exists. Whereas the first sunspot zone drifts during the cycle from
higher to lower latitudes, the second zone gradually moves toward higher
latitudes during the period between the epochs of minimum and maximum.
In his study of this zone, Becker used the average spot area as the main
parameter describing sunspot activity. This index was determined for in-
dividual latitude zones and years, and also for the entire cycle. The high-
latitude sunspot zone could be distinguished when isoline charts for the in-

dex %25‘,/% 2 ES‘ were plotted. Here §, is the average sunspot-group
i J i

area, nis the number of groups in a given latitudinal zone in a given year,

and Nis the number of groups in a given cycle in all the latitudinal zones.

It should be mentioned here that the possibility of the existence of a
second, high-latitude, sunspot zone had already been hinted at in the previ-
ously cited studies of Gleissberg and Kopecky.

Kopecky (1960) has shown that Maunder's butterfly diagrams and Becker's
isoline charts represent two physically different aspects of solar activity.
Whereas Maunder's diagrams indicate the frequency of occurrence of sun-
spot groups, Becker's diagrams show the average intensity of the groups.
Since this is the case, it is difficult to agree with Becker's statement that
Maunder's butterfly diagrams are more schematic than the Becker diagrams,

In the same article Kopecky verifies the actual existence of the second,
high-latitude, sunspot zone, using as an index the daily average spot area.
The latter is defined as 3S,/N, where 3§, is the total area of the sunspot
groups, and N is the number of groups in a given day. Kopecky also demon-
strates that the use of this index makes it possible to distinguish the second
sunspot zone more clearly.

In his most recent study of this subject, however, Kopecky (1962) con-
cludes that, because of Becker's somewhat biased approach to the data, the
existence of the second, high-latitude, sunspot zone cannot yet be consid-
ered as definitely proven.

Finally, let us also mention that Lockyer's explanation (1904), accord-
ing to which there is no single sunspot zone but rather several centers
which migrate toward the solar equator during the 11-year cycle, has
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recently been revived. Bell (1960) studied the magnetic fields of sunspots
using data from Mount Wilson and investigated the latitudinal distribution

of sunspot groups in order to obtain a multizonal pattern decribing sunspot
formation, on which the maxima of these zones were separated from one
another by about 5° of latitude. According to Bell, these subzones do not
shift toward the equator but rather appear sometimes and disappear some-
times, This explanation has been represented graphically by Bell by means
of a '"caterpillar' diagram (Figure 3), which suggests comparison with
Maunder's butterfly diagram. It should be observed, however, that a divi~
sion of the solar disk into 2° zones, even when the results obtained are
smoothed, may lead to false conclusions, since in most cases the spot
groups extend over more than 2° of latitude, Although Bell's results ap-
pear very attractive from the viewpoint of Alfvén's theory (1952), neverthe-
less no arguments against the objection just raised have yet been found.
Vitinskii (1961d) has shown that the "‘caterpillar' diagram represents a
fictitious result, obtained as a result of dividing the solar disk into latitudi-
nal zones which are narrower than the latitudinal width of average-size sun-
spot groups and as a result of combining spot groups of different magnetic
types arbitrarily. In addition, Eigenson has stressed the insufficient statis-
tical substantiation of Bell's results, a factor which also renders her con-
clusions unacceptable.
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In conclusion, let us observe that SpOrer's law has a somewhat different
form for the northern and southern solar hemispheres. However, this prob-
lem will be discussed in detail below, in connection with the asymmetry of
solar activity.

Thus, we have considered two basic regularities of solar activity. The
Schwabe-Wolf law and Spérer's law. The first law describes the variation
in relative sunspot number, and in other solar indexes, and provides a
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quite sharp definition of the epoch of sunspot maximum and a less sharp
definition of the epoch of sunspot minimum. It is represented by a continu-
ous function. The second law reflects the change in the average latitude of
sunspots and other active solar formations, and it defines quite sharply the
epoch of minimum but gives practically no indication at all of the epoch of
maximum. This law is represented by a discontinuous function of time, in
which the discontinuities correspond to the epochs of sunspot minimum for
each cycle.

The relation between the Schwabe-Wolf law and Spdrer's law is very im-
portant, and it has particular significance with respect to the forecasting of
solar activity.

§$ 4. The Correlation between the Schwabe-Wolf Law
and Spbrer's Law

The shifting of the sunspot zone as a function of the variation in Wolf
number was studied by Waldmeier (1939), who used the data for the years
1836 through 1933, that is, for 7 solar cycles. If Wy is the maximum
smoothed monthly Wolf number in a given cycle, @_gis the average
smoothed heliographic latitude of the sunspot zone for the phase 50 solar
rotations prior to the epoch of sunspot maximum, @, is this latitude in the
epoch of maximum, and @, is this latitude for the phase 50 solar rotations
after the maximum, then according to Waldmeier the following relations
are satisfied:

9_go =(17.58 + 1.74) -} (0.0839 + 0.0189) W, (1.15)
ox=(8-19 + 1.36) - (0.0699 + 0.0143)W,,, (1.16)
%450 = (544 + 0.85) - (0.0427 + 0.0089) W, (1.17)

These relations show that the sunspot zone reaches higher latitudes, the
greater is the maximum relative sunspot number for the given cycle.

The correlation between the Schwabe-Wolf law and Spodrer's law was
studied in detail by Gnevyshev and Gnevysheva (1949). In their approach
to this problem, these authors smoothed the yearly average latitudes of the
sunspot zones for eight different 11-year cycles (1856 —1943). In order to
do this, they used the average curve for shifting of the zone, obtained by
translating the Spdrer curves for the different solar cycles until the best
fit was found. This curve is shown in Figure 4, where the points indicate
the individual determinations of ¢. By measuring the time intervals between
points on Spdrer's curve for the given cycle and points on the average curve
in Figure 4 (these points corresponding to the same values of @) and then
taking the average of these intervals, we will obtain the distance along the
time axis over which the average curve for @ (f) must be translated in order
to give the best fit with the @ (¢) curve for the given cycle. In this way, the
smoothed latitude values ¢ listed in Table 5 were obtained.

After studying the values of W for corresponding latitudes in different
cycles, arranged according to the total "'cycle intensity' ZW (excluding the
minimum years), Gnevyshev and Gnevysheva came to the following con-
clusions.
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1. The change in Wirom cycle to cycle, at all latitudes higher than
14°, is proportional to TW. This follows from the fact that the values of
the correlation coefficients between W for a given latitude and ZW are
higher. The values of W at latitudes of 12° and below are independent of
IW, the correlation coefficients between W and ZW being low.
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2. The standard deviations from the mean W for latitudes of 12° and
below are small, whereas for @2>»14° these deviations are large.

3. The more ZW increases, the higher will be the latitude ¢ at which
the maximum W in the given cycle is attained.

The first two conclusions imply that on the descending parts of the sun-
spot-cycle curves (that is, at low heliographic latitudes) W depends entirely
on the latitude, and that this dependence is the same for all cycles, Cons:. -
quently, if Wis known, the average sunspot latitude at the year of sunspot
maximum can be determined. The correlation between @y and TW is very
high (r = £0.94) and is given by the expression

om = 7.°4-+0.016ZW. (1.18)

This relation gives the latitude at the year of sunspot maximum with a
standard deviation of +£0°,9, a value which is within the allowable error
for measuring the sunspot coordinates.

The following conclusion can be drawn from a study of the relation be-
tween @y and ZW : the greater ZW is, the earlier the epoch of sunspot
maximum for the solar cycle will occur, that is, the steeper will be the as-
cending branch of the curve. This indicates that the epoch of maximum does
not occupy a fixed position in the cycle, and may shift in either direction de-
pending on the cycle intensity.
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Rubashev (1958) used the smoothed yearly average sunspot latitudes obtained
by Gnevyshev and Gnevysheva inorder to show that the latitudes of the epoch
of minimum seem to be independent of the maximum Wolf number Wy. If
we recall Waldmeier's conclusion concerning the high correlation between
the latitude at which the cycle begins and the maximum Wolf number, then
it is evident that the height Wy of the 11-year cycle is a function of the arc
traversed by the sunspot zone during the cycle. It is also very significant
that the average drift rate for the sunspot zone is greater the higher is the
cycle intensity.

TABLE 5

Smoothed yearly average heliographic latitudes of sunspots between 1856 and 1943

Year [ ] Year ] Year [ Year ¢ Year ? Year [
Cycle 10 1870 1872 | 1888 870 1904 1676 1921 g1 1937 1679
1856 3022 1871 16.0 Cycle 13 1905 14.6 1922 8.2 1938 14.9
1857 25.0 1872 14,0 | 1889 30.4 1906 12,9 Cycle 16 1939 13,1
1858 20,9 1873 12,4 || 1890 25.5 1907 115 1923 21.8 1940 11.8
1859 18.3 1874 11.1 §| 1891 21.2 1908 10.3 1924 22,17 1941 10.4
1860 16.0 1875 10,0 || 1892 18.5 1909 9.3 1925 19.5 1942 9.4
1861 14,0 1876 9.0 |f 1893 16.2 1910 8.4 1926 17.1 1943 8.4
1862 12,4 Cycle 12 [ 1894 14,2 1911 7.4 1927 15.0
1863 1.2 1879 24,0 # 1895 12,6 Cycle 15 1928 13,2
1864 10.0 1880 20,3 {| 1896 11,2 1913 22,5 1929 11,8
1865 9.0 1881 17.8 || 1897 10.1 1914 21.2 1930 10.6
1866 8.2 1882 15.6 || 1898 9.1 1915 18,5 1931 9.5
1867 7.2 1883 13.7 || 1899 8.2 1916 16.2 1932 8.5
Cycle 11 1884 12.2 Cycle 14 1917 14,2 Cycle 17
1867 30.2 1885 10,9 | 1901 26.2 1918 12,6 1934 21.3
1868 25,0 1886 9.8 || 1902 22,0 1919 11.2 1935 22.3
1869 20.9 1887 8.8 || 1903 19.0 1920 10,1 1936 19,2

In the preceding section, while discussing Spdrer's law, we devoted a
fairly large amount of space to a description of the second (high-latitude)
sunspot zone, which appears to behave according to a reversed Spdrer's
law. In relation to this, it would be interesting to consider the relation be-
tween the variation in the latitude of this zone and the cyclic variation of
Wolf numbers. Becker (1959), and then Kopecky (1960), have established
that during cycles of increased intensity the second, high-latitude, zone
reaches its highest latitudes. Consequently, there is a definite analogy
between the correlations for 9y and Wy in the two sunspot zones.

§ 5. Some Properties of the Development
of Sunspot Groups

We will not attempt to consider here all known special features of the
development of sunspot groups, especially properties related to the origin
of new groups. Since the main subject of this study is the long-range fore-
casting of solar activity, therefore the properties of long-lived, or 'recur-
rent, ' spot groups will be of greatest interest. It should be noted that the
Greenwich term ''recurrents,' which is applied to these spot groups, is
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actually somewhat inaccurate, since they continue to exist for a long time,
and do not simply recur over several solar rotations. Long-lived spot
groups will here refer only to groups which exist for more than one solar
rotation, and all other spot groups will be called short-lived groups.

The most important factor, from our point of view, is the lifetime of
the sunspots, and the dependence of this lifetime on the other indexes de-
scribing sunspot activity. The early investigations of Maunder (1890),
based on the rather meager data for the years 1886 through 1889, already
established that the most frequently occurring sunspots had a lifetime of
one day. Gnevyshev (1938) studied the lifetimes of spot groups on the basis
of the Greenwich data for 1912— 1934, which included some 3000 groups.
He found that the frequency of occurrence decreased rapidly for spots of
greater lifetime, as shown by Figure 5, In the same article it was shown
that the spot lifetime is greater in lower heliographic latitudes.
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Eigenson studied the variation of the lifetimes of sunspot groups as a
function of the solar-cycle phase (Eigenson, 1940; Eigenson and Prokof'eva,
1950). 1In this study, one solar rotation was taken as the unit of lifetime.
The results showed that the ratio of the number of spot groups with life-
times of two or more solar rotations to the number of spot groups of unit
lifetime varies during the cycle.

Gnevyshev (1938) also studied the dependence of the spot-group lifetime
on the group maximum area, the lifetime unit being 24 hours. He con-
sidered groups with maximum areas up to 400 millionths of a solar hemi-
sphere and with lifetimes up to 40 days. Gnevyshev's results are plotted
in Figure 6, from which it is evident that there is a linear relation between
the group area and the group lifetime.

The dependence of the lifetime of a long-lived spot group (expressed in
days) on the maximum area of the group was considered by Vitinskii (1958b).
In this study, the Greenwich data for 1879 — 1950 were used, and only spot
groups which appeared and disappeared at distances less than 66° longitude
from the central meridian were investigated. A total of 327 long-lived
groups were analyzed, and it was found that for these groups there was
practically no correlation (of the type suitable for forecasting) between the
group lifetime and the group maximum area:

regr=10.42  0.04.
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An analysis of the extensive data available for short-lived spot groups
during these same years showed that there is an essential difference, in
this respect, between long-lived and short-lived groups (for the latter,

TSy T =+ 0.58). Moreover, the relation between the lifetime and maximum
area for short-lived groups is, strictly speaking, nonlinear. For long-
lived groups, on the other hand, it is much closer to a linear relation, a
fact which, incidentally, is also indicated by the scatter of points in Figure 6
(taken from Gnevyshev's article).

For long-lived spot groups the index of maximum magnetic intensity for
the group is much more significant than the maximum group area. Vitinskii
(1957) applied the method of qualitative correlation in order to demonstrate
that long-lived groups with maximum magnetic intensities of 3000 gauss and
above have an average lifetime of three or more solar rotations. Spot
groups with maximum magnetic intensities of less than 3000 gauss, on the
other hand, last for no more than two rotations. Gimmel'farno (1950) has
shown that the maximum magnetic-field intensity of regular spots is attained
later than the maximum area, This is also the case for long-lived spot
groups.

The development of spot groups in time has been considered by many
authors, so that here it is enough to give only the main results, without
going into detail. According to Waldmeier (1955), spot groups can be di-
vided into structural classes which reflect both the relative locations of
the spots and their sizes and shapes. The Zurich classification of Brunner
and Waldmeier contains nine classes, ranging from pores through complex
polynuclear groups to single regular spots. This classification is a static
one, however, in that it characterizes the group structure on a given day
only. No satisfactory dynamic classification of spot groups has been de-
veloped so far, since the structural evolution of spot groups can take place
in very diverse ways. The following development chains, in terms of class
letters, arethe mostcommon: A—B—A, A—B—C—B—A, A—B—C—D—C—
H—J—A A—B—-C—-D—E—F—G—H—J—A. Thelast twosequences are the
most typical ones for long-lived spot groups.

The Brunner-Waldmeier classification is closely related to the number
of spots in a group. This has led some authors (Djurcovié, 1953) to use
the group-class data to prescribe a definite weight to each spot-group class,
a weight which is essentially equivalent to the number of spots in the group.

The variation of the number of spots in a group during group develop-
ment has been considered by Becker and Kiepenheuer (1953). The develop-
ment curves for this index were found to be very nonuniform, even after
reducing the parameter to the center. Since the Wolf numbers are generally
determined without making such a reduction to the center, these curves have
practically no forecasting value. This is also the case for curves represent-
ing the variations of the group classes,

We have still not ascertained which parameter describes group develop-
ment better, the spot number or the total area. However, the curves for
the area variation are more regular, and thus they can be used to some
extent to predict the future development of the group. This problem has
been considered in most detail for individual spots by Dyson (1925) and for
entire spot groups by Ol' (Eigenson et al., 1948). A study of their area-
development curves shows that the maximum area is attained on the 7th to
10th day after the appearance of the group (on the average), after which,
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for long-lived groups, the area gradually decreases. The area-develop-
ment curves are characterized by a steep ascent and a rather gently slop-
ing drop, and in this respect they are very similar to the cyclic curves.

§ 6. Active Longitudes

The active longitudes on the sun have a certain importance for solar-
activity forecasting, and so a few aspects of this subject will now be discus-
sed., Since a great deal of controversy has been caused by the lack of an ex-
act definition of an "active longitude, "' as opposed to an "active region, "
therefore let us first try to define these concepts more clearly.

The active longitude is a longitudinal interval on the sun within which,
for a long time (several years or more), the activity has been consider-
ably greater than that in any other longitudinal interval,

An active region (or center of activity) is a region (or field) on the sun in
which certain forms of solar activity have continuously predominated for a
long time, in comparison with neighboring regions. The lifetime of an active
region ranges from one to ten or more solar rotations.

These definitions indicate two essential differences between active longi-~
tudes and active regions:

1) the lifetimes of active longitudes are considerably higher than those
of active regions;

2) in active longitudes, as opposed to active regions, the solar activity
need not predominate continually over the activity in neighboring intervals.

Consequently, the concept of an active longitude is more comprehensive
than the concept of an active region. Active regions which occur in active
longitudes are more stable, particularly with respect to sunspot activity.

The following conclusions can be drawn on the basis of the many studies
of active longitudes which have been made, especially those of Losh (1938),
Ivanov (1933, 1935, 1936), and Vitinskii (1958a, 1960):

1. active longitudes remain in virtually the same longitudinal intervals
for 2 or 3 cycles;

2. in active longitudes Faye's law of differential rotation is not valid,
and the rotation is apparently rigid;

3. active longitudes are ''pcpulated" mostly by long-lived spot groups
with maximum areas in excess of 500 millionths of the solar hemisphere;

4, according to Losh, active longitudes in the northern and southern
solar hemispheres are located at distances of approximately 180° from
each other,

The objection of Becker (1955) that active longitudes do not actually
exist is largely based on his subjective approach to the concept of an "active
longitude.' The construction of isolines for the various solar indexes has
shown that, in any case, the first three conclusions are corroborated by the
data for seven solar cycles. The study of active longitudes and of the active
regions originating in these longitudes may throw much light on the very
complicated and confusing problem of solar-activity fluctuations.
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§7. The 22-Year Sunspot Cycle

Studies of the magnetic fields of sunspots, which were begun by Hale
and his co-workers (Hale, 1913) during the 14th 11-year solar cycle, have
established the existence of a 22-year sunspot cycle. Still earlier assump-
tions concerning the existence of such a cycle had been advanced by Wolf
(Korteweg, 1883), Turner (1913b), and Ludendorff (1931). However, Hale's
conclusions, contrary to those of the other investigators, were based on a
very significant observational fact, namely the reversal of the magnetic
polarity of sunspots from one 1l-year cycle tothenext. Subsequentobserva-
tions of sunspot magnetic fields have confirmed this result. It has been
found that during odd 11-year cycles (according to the Zurich enumeration)
the polarities of the preceding [p] spots in the groups are the same as the
polarity of the solar hemisphere. This regularity has so far been observed
over three 22-year cycles.

Observations of the magnetic fields of sunspots have made it possible to
establish the beginnings and ends of the 11-year cycles with higher accuracy.
The spots of a new cycle generally start forming even before the end of the
old cycle, and this overlapping of successive ll-year cycles has in some
cases been more than 2 years. The use of data on the magnetic fields of
sunspots has given the differentiation between successive 11-year cycles
a sound physical basis, since spots may be assigned to the old or new cycle
depending on their polarity.

Since studies of sunspot magnetic fields cover only a relatively short
period of time (less than 60 years), it is very important to consider the
problem of the stability of the 22-year cycle and to determine its relation-
ship to the 11-year cycle. Such an analysis was first performed by Gnevy-
shev and Ol' (1948), who used the yearly relative spot numbers for the years
from 1700 through 1944 in order to arrive at the following important con-
clusions.

1. The existence of a 22-year cycle is verified by all the available data,
except for the data of one cycle pair (cycles 4 and 5 in the Zurich system).

2. The 22-year cycle starts with an even 11-year cycle. If we take the
sums IZW of the yearly Wolf numbers for each 11-year cycle, then we ob-
tain the following correlation coefficients for successive 11-year cycles:

=-40.50 4- 0.24,
T even, odd=+0'9" + 0.106.

In subsequent studies of the 22-year spot cycle Kopecky (19502a) estab-
lished that there is a quite close correlation between the respective phases
of even and odd 1l-year cycles. A particularly high correlation is observed
for the second through fifth years after the beginning of the 11-year cycle.
Kopecky also obtained very high coefficients for the correlation between the
maximum yearly relative spot numbers for the even and odd cycles, For
17 Zurich 11-year cycles (with the exception of the cycle pair 4—25), the
correlation coefficient was found to be + 0,765+ 0,106,

Using the data for the years 1700 through 1954, Vitinskii has shown
that the maximum yearly Wolf numbers for the even and odd 11-year cycles
are related by the regression equation

rodd, even

Woad =0.94Weven - 32.4 (r = }-0.844). (1.19)
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It is also an interesting fact that, according to the table of Schove (1855),
the rule of Gnevyshev and Ol' is valid for 67% of all the cases. As the
studies of Gnevyshev and Ol' imply, and as equation (1.19) verifies, the
height of the odd cycle is greater than the height of the even cycle. This
conclusion also follows from Table 6, which is taken from the article of
Kopecky (1950b).

TABLE 6

Relation between even and odd 11-year cycles (according to Kopecky)

Phase| 1 2 3 4 5 6 7 8 9 10
Cycle
Even. . . 8.2 31,93 59,79 11.16 75.71 68.70 | 52.30 33,80 | 24.10 12,50 8.20
Odd ., . . 8.1 32.11 64,89 ]104.57 97.04 | 80.19 | 59.30 45,20 | 32,20 17.60 12,60
Ratiok . . — 1.00 1.10 1.30 1.30 1.20 1,10 1,40 1.30 1,40 1.50

The first two rows of the table give the average yearly Wolf numbers
for respective phases of even and odd ll-year cycles. The third row
shows the ratios between the numbers in the second row and the numbers
in the first row.

Equally important problems are those of the correlation between the
various characteristics of the 22-year cycle and the correlation between the
characteristics of the 22-year cycle and the two 11-year cycles which make
it up. The studies of Chernosky (1954) led to the following conclusions:

1. the average Wolf number for a 22-year cycle and the sum of the rel-
ative spot numbers for this cycle are inversely proportional to the cycle
duration;

2. the average Wolf number for a 22-year cycle and the sum of the rel-
ative spot numbers for this cycle are directly proportional to the duration
of the next 22-year cycle;

3. the average and maximum Wolf numbers for a given 11-year cycle,
and also the sum of the relative spot numbers for this cycle, are on the
whole inversely proportional to the duration of the preceding 11-year cycle.

Since Chernosky's correlation coefficients are relatively low and are of no
use for forecasting, we will not give his regression equations here.

A similar study was undertaken later by Chistyakov (1959), who verified
Chernosky's first conclusion. Moreover, Chistyakov showed that the higher
the intensity of the preceding 22-year cycle, the lower will be the intensity
of the following cycle and thus the longer it will last. Finally, Chistyakov's
studies also show that the correlation between the various characteristics
of the 22-year cycles is no longer observed during epochs of sunspot ex-
trema in secular cycles, a fact which will be considered below.

Some authors (Bezrukova, 1951, 1957; Chistyakov, 1959) maintain that
there also exists a 44-year cycle, but it is still difficult to draw any definite
conclusions concerning this, sincethis facetof the development of solar ac-
tivity has actually been observed only during the last eight 11-year cycles.
Nevertheless, this postulate concerning a 44-year cycle has given some
positive results for forecasting.

The lack of a sufficiently long series of magnetic-field observations for
sunspots has induced some authors (see, for example, Gleissberg, 13952)
to disregard, if not to deny openly, the existence of the 22-year cycle.
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However, there are certain other factors which offer an indirect proof of
the existence of this cycle, For example, there are indications that there
may be a 22-year period of variation in the solar diameter (Cimino, 1944),
while, in addition, Tuominen (1952) has discovered a 22-year cycle in the
variation of the proper motions of sunspots according to latitude.

At any rate, since the law of Gnevyshev and Ol' does not hold true for
the cycle pair 4—5, it is still impossible to draw any final conclusions con-
cerning the reversal of the magnetic polarity of sunspots from one 11-year
cycle to the next. In this connection, it will be of special interest to study
the magnetic fields of sunspots during low-level cycles of solar activity.

At present we can only say that either the rule of alternating sunspot polarity
is just not observed in some cases or else the alternation of high-level odd
and lower-level even 11-year cycles is not always consistent with the re-
versal of the magnetic characteristics.

§8. The 80-Year to 90-Year Sunspot Cycle

From the curve in Figure 1, which shows the variation of the relative
spot number during 18 solar cycles (according to the data of the Zurich
Observatory), it is evident that in addition to the 11-year cycles this in-
dex also undergoes oscillations with much longer periods. This was first
pointed out by Wolf, and subsequently various authors have studied this
problem (Gleissberg, 1945; Eigenson, 1947). The main conclusion to be
drawn from all these studies is that a long sunspot cycle with an average
duration of 80 to 90 years also exists. The 80-year to 90-year cycle is
sometimes called a '"secular'' cycle, because its duration is close to one
century. The average duration of the 80-year to 90-year cycle and the
stability of this cycle cannot yet be determined, because of the lack of
relevant data, Therefore, here we will just give some results which have
a direct bearing on the prediction of solar activity.

First, the 80-year to 80-year cycle shows up most clearly in the varia-
tion of the sums IW of the yearly Wolf numbers over the 22-year cycle, in
the variation of the maximum monthly Wolf numbers Wy, and in the varia-
tion of the duration ¢ of the 11-year cycles., Table 7 lists all these data;

TABLE 7

Main characteristics of the 80-year to 90-year sunspot cycle

Cycle No. W W t Cycle No. w W t
0 92.6 10.2 10 1169 97.9 11.2
1 86.5 11.3 11 140.5 11,7
2 1160 115.8 9.0 12 846 14.6 10.7
3 158,5 9.2 13 87,9 12.1
4 1132 141.2 13,6 14 815 64.2 119
5 49,2 12,3 15 105.4 10,0
6 624 48.17 12,7 16 1016 78.1 10,2
7 L7 10.6 17 119.2 10,4
8 1349 146.9 9.6 18 151.8 10.1
9 131.6 12,5 J

- A i - —_— L
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columns 3 and 4 give the data of Gleissberg (1952) and column 2 gives the
data of Eigenson (Eigenson et al., 1948).
If the data in columns 3 and 4 are smoothed using the formula

%(‘l—l + “:-14+ a;+aun -4 +a +"4+L+ '.'n) (1.20)

a; =

where a; is the index in question during the ith cycle, then we obtain the
following epochs of sunspot minimum and maximum for the 80-year to 90-
year cycles (according to the Zurich enumeration of the 11-year cycles):

Minimum Maximum
6th 3rd
14th 9th

Consequently, the present cycle appears to fall in an epoch of maximum
for the 80-year to 90-year sunspot cycle.

In his "eruption" hypothesis, Waldmeier (1935) involuntarily rejected
all possibility of a correlation between successive ll-year cycles and also
of the existence of longer solar cycles (such as the 80-year to 90-year
cycle). In relation to this, it would be very interesting to consider the

TABLE 8

Coefficients of Stewart-Panofsky formula for 18 solar cycles (least-squares method)

Cycle No, a al® b bh) log F [log F]%) wﬁ)
1 2,39 0.55 +0,906
2 2,80 0.90 1.897
3 3.75 3.09 111 0.85 1,792 +1,319 120,8
4 2.68 3,46 0,67 0.88 1,672 1,244 107.8
5 3.85 3,57 0.89 0.81 0.926 1.076 88,6
6 4.31 3,69 0.81 0.80 0.272 0,962 78,4
7 3,15 3,81 0.69 0,84 1.075 0.980 89,8
8 4.20 3,52 107 0.80 1.476 1,216 105.8
9 3,29 3.26 0.75 0.81 1.365 1.490 120.6
10 2,57 3.16 0.69 0.82 1.627 1.611 120.2
11 2,77 3,17 0,28 0.80 1.912 1.610 105.6
12 3,80 3.46 0,92 0.84 1.611 1.520 96,0
13 3,76 3.83 0.90 0,90 1.231 1.382 817.4
14 4,45 3,90 1,07 0.90 1,048 1.308 83,4
15 " 3.87 3.82 1.01 0.90 1,388 1.295 817.8
16 3.19 3,73 0,90 0,90 1,544 1.398 102.6
17 3,82 0.88 1.269
18 3,66 1,10 1.917

variation of the coefficients in the Stewart-Panofsky formula (1.10) from
cycle to cycle. We observed previously that the assumption that coeffici-
ents a and b are constant constitutes only a very rough approximation.
Moreover, Stewart and Panofsky (1938), using different methods, obtained
sharply differing values of a, b, and F. Finally, Vitinskii considered
formula (1.10) in logarithmic form and solved a system of such equations
for each ll-year cycle, using the least-squares method, to obtain the
values of coefficients a, b, and log Fshown in Table 8.

It is evident from Table 8 that coefficients a and F exhibit a quite dis~
tinct secular variation. Smoothing according to formula (1.20) (see
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columns 3, 5, 7, and 8 of Table 8) gave virtually the same epochs of sun-
spot extrema for the 80-year to 90-year cycle as did the smoothed values of
of SW®and ¢t @, Moreover, the data in Table 8 show that the variation of
2@ is opposite to that of (log F) @ and W, This is perfectly natural, since,
according to equations (1.1) and (1.2), the quantities log Wy and 7T (the length
of the rising part of the curve) vary in an opposite manner. On the other
hand, coefficient b, which almost does not change, shows no secular varia-
tion and thus correlates very weakly with coefficient a.

Therefore, with all due respect to Waldmeier's "eruption' hypothesis,
it is impossible to disregard completely the existence of certain correla-
tions between the 11-year cycles. At any rate, the study of long-term solar
cycles represents one of the most vital problems related to the forecasting
of solar activity.

Becker (1954) showed that the rate of drift of a sunspot zone is also
influenced by the 80-year to 90-year cycle., According to Gleissberg (1955),
the duration of the 11-year cycle can be determined more accurately from
the average rate of drift of this zone than from the cycle height. In this
respect, Becker's conclusion appears to be particularly significant.

§ 9. The Asymmetry of Sunspot Activity in the
Northern and Southern Solar Hemispheres

The study of the asymmetry of sunspot activity in the northern and south-
ern solar hemispheres is closely related to the study of the properties of the
80-year to 90-year cycle. Therefore, although this factor is also allied to
other aspects of solar activity, we will consider it in the present context.

First, let us observe that the 11-year solar-activity cycle constitutes
a single process encompassing the entire sun. This statement is confirmed
by the results of Gorbatskii (Eigenson et al,, 1948) and Brunner-Hagger
(Brunner-Hagger and Liepert, 1941). According to these authors, there is
a quite close correlation between the spot areas in the northern and south-
ern solar hemispheres. Using the Greenwich data for the years 1879
through 1954, we obtain the following coefficients for correlation between
the maximum yearly spot areas and the sums of the yearly areas over the
11-year cycle, for the northern and southern solar hemisphere:

TS S +0.63 and rg Sy, B85 = -0.86.

Sn

Moreover, the correlation established by Waldmeier between the length
of the rising branch of the curve and the intensity of the cycle is equally
evident no matter whether the spot-area indexes for the entire solar disk or
for the individual hemispheres are used (Brunner-Hagger's correlation
coefficients are —0,45 and -0.44, respectively). Thus, all the features of
solar-activity asymmetry in the northern and southern hemispheres rep-
resent effects of second order. It should be noted, by the way, that insofar
as the Wolf numbers have not been determined separately for the two hemi-
spheres (except for 10 years of observations at Zurich) all the studies of
this problem have been based on the Greenwich data for spot areas.
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A study made by Maunder (1904) of the variation of sunspot areas in the
northern and southern hemispheres for the years 1874 to 1902 led to the
following conclusions.

1. The spot-area curves for the 12th and 13th cycles have double maxima
for the northern hemisphere and single maxima for the southern hemisphere,
the single maxima being the higher of the two.

2. The single maxima coincide with the maxima for the entire sun; the
points on the double maxima are separated by about three years, the trough
in between corresponding to the epoch of maximum for the single-maximum
cycle,

3. The epochs of extrema for cycles of double maxima occur earlier than
the corresponding epochs for cycles of single maxima.

4, The cyclic curves representing the changes in latitude in the northern
and southern solar hemispheres are also, respectively, single-maximum
and double-maximum curves [sic].

Subsequently, these conclusions were verified, on the basis of extensive
data, by Bezrukova (1951, 1957), whose studies also led to a more detailed
description of the cyclic curves for the northern and southern solar
hemispheres.

A study of seven 11-year sunspot cycles has shown that there are two
types of 11-year cycles (in the respective hemispheres), namely single-
maximum and deformed. In later works Bezrukova (1958) refers to de-
formed cycles as double-maximum cycles, but the application of this term
to all the data studied by Bezrukova is, in our opinion, not quite justified.
The deformation of a cycle expresses itself as a brief decrease in spot
area near the epoch of maximum, but does not necessarily correspond to
a double maximum. If in one hemisphere the cycle has a single maximum,
then in the other it is deformed. Between 1878 and 1923, the forms of the
cyclic curves for the northern and southern solar hemispheres alternated
after every two ll-year cycles, whereas since 1924 they alternated every
cycle. It should be noted that this change in the alternation pattern for the
curve forms occurred in the 15th cycle, that is, near the epoch of sunspot
extremum of the 80-year to 30-year solar cycle.

The alternation of low and high l1l-year cycles in a Hale pair, which was
established by Gnevyshev and Ol', is equally typical of both the northern and
southern hemispheres of the sun. Moreover, the variation in the height of
the 11-year cycle and the change in the alternation pattern of the cyclic-
curve forms may indicate the existence of a 44-year cycle, a possibility
which was mentioned briefly earlier.

The rising part of the curve for the 11-year cycle is mainly due to the
development of the activity of a deformed cycle. This also applies to the
descending part, particularly a year or two after the epoch of sunspot
maximum. The maximum of an 1l1-year cycle is mainly determined by the
maximum of the single-maximum cycle. An analysis of the data indicates
a correlation between the spot areas of the secondary maximum, the pre-
ceding main maximum, or the first main maximum of the preceding de-
formed cycle, on the one hand, and the spot area of the maximum for the
following single-maximum cycle, on the other.

It should be noted that Bezrukova used data from both the Greenwich and
the Pulkovo catalogs. For this reason, her cyclic curve for the 17th cycle,
in particular, does not correspond to the Greenwich data. Figure 7 gives
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the cyclic curves for cycles 12 through 18 for the northern and southern
hemispheres (the solid curve refers to the northern hemisphere and the
dashed curve to the southern hemisphere). As shown by the figure, the
cyclic curves may be either single-maximum or double-maximum. Up
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to the 14th cycle, Maunder's rule was observed. In the 14th cycle, how-
ever, a double-maximum cycle was observed for the southern hemisphere
while the cycle for the northern hemisphere was single-maximum, after
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which the alternation of double-maximum and single-maximum cyclic
curves is observed in the northern hemisphere only. In the 15th and 17th
l1l-year cycles the curves for both the northern and southern hemispheres
were single-maximum curves.

As observed previously, one of the effects of the asymmaetry of solar
activity in the two hemispheres is the asynchronous development of spots,

a phenomenon which is particularly pronounced near the epoch of maximum
of the 11-year cycle. According to Brunner-Hagger (Brunner-Hagger and
Liepert, 1941), the divergence of the epochs of maximum in the northern
and southern hemispheres for cycles 11 through 17 amounts to 1.7 years,
which is equivalent to an effective area decrement of 200 millionths of the
solar hemisphere.

The studies of many authors (Brunner-Hagger and Liepert, 1941; Dizer,
1956; Bezrukova, 1957) have shown that the asymmetry of solar activity in
the two hemispheres varies with the 80-year to 90-year cycle. To illus~
trate this feature, the following data (taken from Dizer's article) show the

- n—s
variation of the parameter A=n—+’.
average spot latitudes in the northern and southern hemispheres:

where n and $ are respectively the

1856 — 1866 1867 — 1878 1879 — 1889 1890 — 1901 1902 — 1913
+ 0,50 + 0,11 —0,36 —0.34 —0,23
1914 — 1923 1924 — 1933 1934 — 1943 1944 — 1954
—0.15 +0.10 + 0,12 + 0,20

Since the series contains 9 members and 1 minimum, the probability of a
cyclic variation is, according to the criterion of Gleissberg (1946), better
than 99.5%.

Finally, it should be mentioned that all attempts to establish any periodic
regularity of the distributions of spot-area differences in the northern and
southern solar hemispheres within the 11-year cycle have so far failed
(Vsekhsvyatskii, 1950; Bogorodskii and Zemanek, 1950).

§ 10. Fluctuations in Solar Activity

If we plot a development curve for the 11-year cycle, using the monthly
values of any sunspot-activity index, then we obtain a curve which is far
from smooth and which contains many secondary maxima of different in-
tensities. These deviations from the average cyclic curve, the latter being
smoothed according to some formula, are usually called fluctuations in the
solar activity.

The basic feature of these fluctuations is that they outline quite clearly
the 80-year to 90-year cycle (Balli, 1955). The fact that the secondary
maxima and minima of the Wolf numbers and spot areas coincide in phase
for ll-year cycles with rising parts of the curve which are approximately
equal in length is considered to be an indirect proof of this correlation
(Xanthakis, 1957; Xanthakis, 1959). The fluctuations of the relative spot
numbers show no periodicity within the 11-year cycles and so can essentially
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be considered as independent processes (Vitinskii, 1961b). The properties
of the solar fluctuations (their amplitude and duration only, their intensity
being disregarded here) do not show essential differences over the rising
and descending parts of the 11-year cycle. This also applies to the spot
areas, since a very close correlation exists between the Wolf numbers and
the sunspot areas.

Strong fluctuations in solar activity are the most important for fore-
casting purposes, since they constitute the main source of errors in prac-
tically all empiricostatistical methods for the forecasting of solar indexes.
Strong fluctuations are here understood to mean deviations from the mean
cyclic curve which are in excess of one standard deviation. An analysis of
the data listed in the catalog of strong fluctuations for the years 1755—1954
(Vitinskii, 1960b, 1960c) leads to the following conclusions.

1. Practically all the cycles show strong fluctuations in Wolf numbers
during the first year prior to the epoch of maximum of the solar cycle and
during the three years after this epoch. An analogous conclusion was
reached by Bezrukova (1958), as a result of an analysis of spot areas in
the northern and southern solar hemispheres.

2, The higher the intensity of the 11-year solar cycle, the lower will be
the density of the strong fluctuations (the fewer fluctuations will be observed
per annum in the rising part of the curve). Low-level cycles, conversely,
have a quite high density of fluctuations during their rise periods.

3. There is a fairly sharp distinction between the properties of the
strong fluctuations during the rising and descending parts of the 11-year
cycle, During the period of rise, the density of strong fluctuations is
primarily determined by the duration of the rise, whereas during the
period of descent it is determined both by the duration of the descent and
by the maximum Wolf number.

Incidentally, attempts which have been made to determine the yearly
variation of Wolf numbers (see, for example, Vsekhsvyatgkii, 1950) can
hardly be considered successful, Loewe and Radok (1959) have shown that
the yearly wave of monthly relative spot numbers is not stable and should
rather be considered as one of the random fluctuations in a strictly auto-
correlated time series.

A detailed study of the fluctuations of sunspot areas in the northern and
southern solar hemispheres was made by Bezrukova (1958). Her results
indicate that the maximum area fluctuation in a single-maximum cycle
occurs at the 16th fluctuation, where the fluctuations are numbered from
the beginning of the 11-year cycle regardless of their intensity. The maxi-
mum fluctuations of deformed cycles are on the average the 5th, 8th, and
11th fluctuations in the rise period and the 15th, 19th, 22nd, and 29th in
the descent period. Thus, in this case a gap of 3 or 4 fluctuations is ob-
served between successive high fluctuations, The highest fluctuations in
a deformed cycle are the 9th and 24th.

§ 11. Some Remarks Concerning Long-Duration
Solar Cycles

Although the reliable data which are available at present on the Wolf
numbers cover over nineteen ll-year sunspot cycles, these are still
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insufficient for reaching any definite conclusions concerning the possible
existence of long-duration solar cycles. It is true that the table of Schove
(1955) contains qualitative data on sunspot activity which goes back to the
year 649 B.C., obtained from descriptions of the polar auroras, but these
data can only with a certain reservation be utilized for estimating long-
period solar-activity cycles.

However, some quantitative estimates canbe made without using Schove's
data. Gleissberg (1944a), in an analysis of the ratio Q of the lengths of the
rising and descending parts of the 11-year cycle, observed a systematic de-
crease in this parameter during the years between 1615 and 1937. Conse-
quently, he concluded that there may exist a sunspot cycle with a duration
of some thousand years. Rubashev (1949) discovered a 600-year cycle on
the basis of the variation in the number of comets which were visible to the
naked eye, and finally Maksimov (1953) established the existence of a cycle
of like duration from the variation in the thickness of tree rings.

If we now consider the data in Schove's table, we see that at the end of
the 17th century solar activity reached an all-time low for the period of
telescopic solar observations, whereas a cycle comparable in intensity to
the present cycle last occurred from 1368 to 1378 (about 600 years ago).
Therefore, there is some indication that a solar-activity cycle about 600
years in length exists.

It was mentioned previously that so far we cannot hope to determine the
duration of the 80-year to 90-year cycle with any real accuracy, and that
this duration is apparently subject to very strong fluctuations, ¥For ex-
ample, Schove's table indicates that this cycle can be anywhere from five
to eleven 11-year cycles in length. Of course, these results only represent
estimates, but they suffice to show that cycles with durations of fifteen
(Anderson, 1954; Djurcovié, 1956) or sixteen (Bonov, 1957) 1ll-year
cycles are extremely unlikely. Actually, for the first case to be true, two
adjacent secular cycles would have to have durations of seven and eight 11-
year cycles, whereas in the latter case the adjacent cycles would both be
eight 11-year cycles in duration. It is significant that in his most recent
article Bonov (1961) refers only to a long sunspot cycle, without mention-
ing its duration explicitly. Therefore, the problem of long-duration solar-
activity cycles has so far only been posed, and we are still very far from
a solution,

§ 12. Concluding Remarks

In conclusion let us stress once more that in the present chapter we
have not attempted to give a detailed representation of all the fundamental
properties of solar activity., Rather we have only discussed certain prob-
lems which have a direct bearing on the forecasting of sunspot-activity
indexes.

In relation to this, we have not been concerned with solar activity in the
chromosphere and corona. Moreover, for the same reason, some very
basic problems of sunspot activity have been disregarded entirely, whereas
certain phenomena which, though of secondary significance for the overall
study of solar activity, are nevertheless important with respect to solar
forecasting have been considered in great detail.
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Chapter 11

SOLAR-ACTIVITY FORECASTS A YEAR OR
SEVERAL YEARS IN ADVANCE

§ 1. Introductory Remarks

In this chapter we will consider basic methods for the long-range fore-
casting of Wolf numbers a year or several years in advance, within the
limits of the current cycle. These methods are the most reliable of all the
empiricostatistical forecasting methods available at present. In addition,
they are quite accurate, mostly due to the diversity of the methods, the
errors of which mutually compensate one another.

As observed previously, the ascending and descending parts of the 11-
year sunspot cycle have essentially different characteristics, so that it is
advisable to consider separately methods for forecasting the Wolf numbers
for the two branches. It should also be noted that some authors compute,
instead of the yearly value, the smoothed monthly Wolf numbers for the
corresponding separate epochs of the cycle. Thus, in each individual case
it will be specified which relative spot numbers are actually being considered.

The "eruption' hypothesis of Waldmeier (1935) has had special signifi-
cance for the development of methods for forecasting Wolf numbers within
the current cycle, Before the advent of this hypothesis, investigators were
mainly concerned with studying real, but more often imaginary, periodici-
ties in solar activity in such a way that a great number of mostly unsuc-
cessful uliralong-range forecasts resulted. The "eruption' hypothesis,
however, forced researchers to concentrate exclusively on the basic inner
regularities of the 11-year cycle. The principal results of these studies
were discussed in Chapter I, so that it will not be necessary to repeat them
here. It should be noted, though, that the forecasts obtained on the basis of
these methods have been the most trustworthy. Since Waldmeier was the
first to offer a successful forecast of the Wolf numbers for the current
cycle, let us begin by discussing his method.

§ 2. Waldmeier's Method

Waldmeier's method for forecasting solar activity within the current
cycle is based on relations (1.1) through (1.6). The first two of these
formulas can be replaced quite accurately by the single formula

logW, =2.58 —0.14T, (2.1)
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from which we obtain
T—=18.4—17.14 logW,. (2.2)

Here, Wy is the smoothed monthly maximum Wolf number and Tis the
duration of the rising part of the cycle, in years.

It will be convenient to introduce another very important characteristic
of the 11-year solar cycle, namely the rate of iis development

Wy—W
V =—'—?—-—.- . (2.3)
where W, is the minimum smoothed monthly Wolf number. From (2.2),
we have
Ve YWy (2.4)

2(IBA—T.1K Iog W,y

If this parameter is determined at the beginning of the cycle, then it can
be used to forecast Wy.

This method was first applied by Waldmeier to predict the height and the
epoch of maximum of the 17th sunspot cycle, and it was found to be excep-
tionally dependable, especially for that time (Waldmeier, 1936). Wald-
meier used the smoothed monthly Wolf numbers for the period from 1933
to October 1935 to obtain values of 124 for the height of maximum and 1837.7
for the epoch of maximum. The actual height of the maximum of the 17th
cycle was 119.2, while the epoch of maximum was 1937.4. No less success-
ful was Waldmeier's forecast for the 18th solar cycle (Waldmeier, 1946):

Epoch of maximum Height
Observed . . . . . . . . . . 1947.5 151.8

Forecast . . . . . . . . . . 1947.6 139

The above basic propositions of Waldmeier's method are of particular
significance, and thus deserve special attention. In practice, Waldmeier's
method also makes it possible to predict the Wolf numbers for the descend-
ing part of the cycle. In order to do this, an analog cycle is selected on the
basis of the data for the beginning of the current cycle, and the descending
part of this analog cycle is used to predict the Wolf numbers for the des-
cending part of the current cycle. It should be noted, however, that the W
values forecast for the descending branch using this method were some-
what low.

Ol' (1949a) investigated the reliability of Wolf numbers forecast for
the ascending and descending parts of the cycle using this method. He
plotted the mean cyclic curves for two groups of cycles, namely high cycles
with Wy > 100 and low cycles with Wy <100 (cycle 4 was not considered),
Ol' then computed the reliability of the average values W} (i=—5, —4, ...,
0, +1, ...,+7 obtained in this way, with an accuracy of 10%, from the cor-
responding W{(i=0 in the epoch of maximum). For the highcycles (Wx = 100)
the average reliability for the ascending part of the cycle was 0,51, while for
the descending partitwas 0,76. Consequently, for highcycles, forecasts can
be made for the descending part only. For low cycles (Wy < 100) the aver-
age reliability for the ascending and descending branches was 0.49 and 0.53,
respectively. Consequently, the average cyclic curve for low cycles is com-
pletely inadequate for forecasting. Thus, to summarize, Wolf-number
forecasts for the descending part of the curve, obtained by the analog
method, are unreliable even for high cycles.
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§ 3. The Cyclic-Curve Method

Stewart and Panofsky developed Waldmeier's analog method and "erup-
tion'' hypothesis further to formulate a method based on their two-param-
eter formula (1.10)

W = F§"e—%,

Whereas Waldmeier's method is actually based on a one-parameter family
of cyclic curves, in the method of Stewart and Panofsky constants F, @ and b
are assumed to change from cycle to cycle (Stewart and Panofsky, 1938).
Using the data for solar activity up to 1838, Stewart and Eggleston (1939)
determined the constants in equation (1.10) for the 17th cycle and then pre-
dicted the smoothed monthly Wolf numbers for the descending part of this
cycle. This forecast is shown as follows, the figures in parentheses being
the observed values for the given months (or, more precisely, the smoothed
values):

VIl 1939 — 87.2(87.6), VI 1941 —37,7(47.1),
1 1940 — 73.5(73,5), 1 1942 —28,9(43.8),
VIL 1940 — 60.3(67.6), VII 1942 — 21,8(29.6).

1 1941— 48.2(56.6),

These data indicate that the cyclic-curve method gives values for the
relative spot numbers on the descending curve which are too low, More-
over, the three parameters cannot be determined unless a quite consider-
able portion of the cyclic curve is available, a factor which limits the fore-
cast severely.

In addition the cyclic-curve method was subsequently employed by Cook,
who plotted a one-parameter family of cyclic curves on the assumption that
parameters b and F are related to a (Cook, 1949), The parameter a is best
determined from the curve for the relation between @ and Wy. However,
Cook's method predicts Wolf numbers with such a low accuracy that it is
hardly worthwhile to use it for forecasting purposes.

Finally, Chvojkova (1952) has approximated the 11-year cyclic curves
using the expression

Wy 2nt
W_—.-—z-(i—cos m). (2.5)

Here, t is the time from the beginning of the cycle, I is the duration of the
T,r
1—Tyr*
to the epoch of maximum (that is, the length of the rising part of the curve).

This equation can also be used to predict the Wolf numbers on the descend-
ing part of the cyclic curve. The parameters Wy, a and T can be selected
according to the rising part of the given cycle. It should be observed, how-
ever, that Chvojkova's formula is innoway superior to the Stewart-Panofsky

formula. The Wolf numbers obtained using this formula are also too low,
and the results apply to a very restricted portion of the cyclic curve,

Consequently, the cyclic-curve method does not ensure an adequate re-
liability for forecasts of values on the descending branch. In addition, its
applicability is highly restricted, so that it is only of historical significance
with respect to forecasts of Wolf numbers for the current cycle. Later,
however, we will show that this method is useful to some extent in ultralong-
range forecasts,

cycle, and a= where T is the time from the beginning of the cycle
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§ 4. Gleissberg's Method

Waldmeier's method and the cyclic-curve method are both based on the
assumption that the 11-year solar cycles are entirely independent of one
another. Gleissberg (1939), on the other hand, carried out certain studies
which indicated that successive cycles are mutually dependent and show a
long-period variation pattern. Consequently, Gleissberg's method for fore-
casting the Wolf numbers is only partly a method for predicting the Wolf
numbers for the current cycle. It might be classified more appropriately
as a method for ultralong-range forecasting. Therefore, here only Gleiss-
berg's article (1940), in which he first gave a forecast for the descending
part of the 17th sunspot cycle, willbe considered. The details of the method
will be discussed in Chapter IV,

Since the epoch of minimum of the solar cycle cannot be pinpointed due to
the overlapping of two successive cycles, therefore Gleissberg introduced a
reduced length ¢, for the rising part of the cycle and a reduced length I, for
the falling part, these being determined as follows. If Wy is the highest
smoothed monthly Wolf number in the cycle, tx is the month of occurrence
of this maximum number, and ¢, and ¢ are the months in the rising and de-
scending parts of the cycle, respectively, in which the smoothed monthly

Wolf numbers are equal to -:‘-Wu, then ¢, and £, are defined as
t,=ty—t, and t,=l{,—~1,. (2.6)

Using the Zurich data, Gleissberg determined W, ¢,, and?, for cycles
0 through 17. Then, he took the average of four successive 11-year cycles
to obtain the quantities W, t¥, and t¥. Table 9, in which these values are
listed, shows that the long-period variation of W is accompanied by analog-
ous variations of fMand ¥, The maxima and minima of ¢§ almost coincide
with the maxima and minima of W, whereas the maxima of ) correspond
to the minima of Wi and vice versa, Moreover, the sum ¥ which is
given in the last column of Table 9, remains practically constant. It is im-
portant to note that the data in the last five columns of the table refer to
cycles 0—3, 1—4,..., 14—17, 15—18, 16 —19, respectively.

The figures in the last column of Table 9 show that the sum ¢,®W4-¢® al-
ways lies somewhere between 84 and 92. Gleissberg thus assumed that for
cycles 14—17 this sum would not be less than 84, Consequently, since the
corresponding ¢t,®was 33, the next value of £, should not have been less than
51. This quantity, then, represents the average of f,for cycles 14 through
17. Also, the sum of these four numbers should at any rate not be less than
203, and since the sumn of the three numbers (for cycles 14, 15, and 16) in
column 5 of Table 9 is 140, therefore fyfor the 17th cycle should not be less

than 63 months. In the 17th cycle, Wxy=119.2, thatis, %WM=3O. Therefore,

the smoothed monthly Wolf number should drop to 30 no earlier than 63
months afier the epoch of maximum (April 1937), that is, not before the
second half of 1942. Actually, the smoothed monthly relative spot number
first dropped below 30 in July 1942, Therefore, this first application of
Gleissberg's method was here completely successful and even represented
some progress in comparison with Waldmeier's forecast,
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TABLE 9*

Principal characteristics of 11-year sunspot cycles (according to Gleissberg)

KR R B EE E
0 92,6 - - 41 118,4 - -~ 49 -
1 86.5 41 52 48 125.5 33 31 59 90
2 115.8 22 29 58 116.2 40 33 54 87
3 158.5 29 17 48 99,4 52 34 53 87
4 11412 41 28 81 7.1 59 43 49 92
5 49,2 66 57 27 19.1 56 42 42 84
6 48.17 73 35 54 99,7 51 36 52 88
7 71,7 57 51 35 112,0 44 35 56 91
8 1469 29 24 52 129, 2 a7 29 60 89
9 131,6 45 34 68 1112 45 34 56 90
10 97.9 45 31 70 100.2 47 35 53 88
11 140.5 30 26 51 91.8 49 36 49 85
12 74,6 62 47 34 83.0 55 38 48 86
13 87.9 51 36 57 83.9 49 37 49 86
14 64,2 53 35 54 91,7 41 33 51 81
15 105,4 52 32 46 113.6 43 30 52 82
16 78.1 39 43 40 137,6 40 29 — —
17 119,2 45 23 63

18 1518 317 21 58

19 201,83 41 31 —

* Table 9 also gives the data for cycles 18 and 19, taken from later works of Gleissberg (Gleissberg, 1953).
In addition, the values of ¢, and t,(4), which will be defined in Chapter 4, are also given here.

§ 5. The Latitude Method

As mentioned previously (see Chapter I, §$4), the Wolf numbers in the
descending part of the 11-year solar cycle are completely determined by
the heliographic latitude, this dependence being the same for all cycles.
This regularity is most reliably observed for latitudes of ¢ < 14°, The
latitude method is based on this dependence, which was established by
Gnevyshev and Gnevysheva (1949). The form of the relation between the
corresponding @ and ¢ for the descending part of the sunspot cycle was
shown above in Figure 4.

Let us now use the curve in Figure 4 and the yearly average latitudes
for the rising part of the given 1l-year solar cycle to forecast the yearly
Wolf numbers for the descending part of the same cycle, In order to do
this, we will plot the latitudes for the rising part and the beginning of the
descending part of the curve (up to 14°) onto tracing paper and then super-
impose the tracing paper onto the mean ¢=¢(f) curve in Figure 4 in such a
way that the points on the tracing paper fit the curve best (the tracing paper
is moved along the abscissa axis to find the best fit).

Using the mean curve we then transpose onto the tracing paper the con-
tinuation of this curve for the descending part of the given cycle and read
off the latitudes @ at one-year intervals. These values of ¢ now allow us
to plot the relation between @ and W for @ < 14° found by Gnevyshev and
Gnevysheva (see Figure 8). In this way we obtain the yearly relative spot
numbers for the descending part of the 11-year solar cycle.
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Using the latitude method, Ol' (1954) computed the yearly Wolf numbers
for the descending parts of cycles 10 through 18. The [overall] standard
deviation of the values obtained was 11.8,

As an example of a forecast based on the latitude method, let us predict
the yearly relative sunspot numbers for the descending part of the 18th
cycle:

1949 | 1950 | 1951 | 1952 | 1953 | 1954

® - e o e e o ama e | 10v7 | o5 | 8% | T9
W . e 86 61 43 27 17 10
Wobs - - . . o« o« o+ . . 135 84 63 | 31 13 4

A comparison of the observed numbers Wobs Wwith the forecast numbers W
indicates that the high values of Wobs in the middle of the descending branch
(1949—1951) were not foreseen, For the subsequent years, however, there
is a satisfactory agreement between Wobs and W.
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FIGURE 8

Just as in the case of Waldmeier's method, the main advantage of the,
latitude method is its simplicity. If it is also kept in mind that its reli-
ability is higher than that of the analog method, then this method recom-
mends itself as one of the working methods for predicting the descending
part of the cycle. Unfortunately, however, its range is very restricted
(it is applicable for ¢ < 14°only). Moreover, the latitude method does
not take into account fluctuations in the yearly Wolf numbers (and in the
latitudes), a fact which is evident from the following forecast for the 19th
cycle. The following yearly Wolf numbers were obtained for the descend-
ing part of the current (19th) cycle: 1961 —64(51), 1962 —52, 1963 —34,
1964 —28, 1965—13.

§ 6. Kozik's Method

Kozik's method is based on the use of a new sunspot-activity index
K=10 yW, which was first introduced by Omshanskii (according to
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Kozik, 1949). While applying this index in order to simplify the 11-year
sunspot-cycle curve, Kozik (1946) discovered the following advantages of
the index over the Wolf numbers:

1) the use of the index K levels off the fluctuation amplitudes for different
phases of the 11-year solar cycle;

2) the scatter of heights of the minima and maxima of the 11-year cycles
is of the same order of magnitude for the index K;

3) the correlations with certain geophysical indexes become more
simple and linear when the index K is used.

The cyclic curves for the index K constructed by Kozik (1949) illustrate
the four fundamental points characterizing an 11-year cycle, namely, the
beginning of the cycle, the first break point, the second break point, and the
end of the cycle. If all the 11-year solar cycles are divided into three
groups according to intensity, namely strong (Wy > 110), average
(80 < Wy < 110), and weak (Wy < 80), then we find that in strong and aver-
age cycles the second break point coincides with the epoch of sunspot maxi-
mum. For low cycles the second break point is either located on the same
level as the first break point or else even lies below it. Unfortunately, the
first and second break points can be determined only with low reliability,
and this naturally affects the reliability of forecasts for low solar cycles.

m @

i3
FIGURE 9

The general form of Kozik's cyclic curve is shown in Figure 9, in which
the following notation is used: (1) and (2) are the first and second break
points; K, is the value of index K at the second break point; and #, is the
time from the second break point to the point where K= 0.

Although Kozik derived relations describing both the descending and
rising parts of the 11-year cycle, we will consider here only his results
for the descending part.

The initial assumption is that during the descending part of the cycle
the index K is a linear function of time. Moreover, the rate of decrease
of Kin the descending part is apparently independent of the height of the
given cycle and averages 11 to 13 per annum. From an analysis of 17
cycles (cycles 3 and 4 in the Zurich enumeration were excluded), Kozik
found that

ty=0.08K;(c= +0.59 yr). (2.7)

If ¢ is the time reckoned from the second break point, then from Figure 9

it is evident that
K _K, K—K K,y
ty—1¢ - 13 y OF — s T’ t.
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Now, from equation (2.7) we find that
K=K,—12.5¢, (2.8)

and, since K=10yW, formula (2.8) gives the yearly values.

We should also note the following factor. Since the preceding formulas
were derived from the monthly values of W, therefore K should be computed
for the middle of each year and then, after converting from K to W, unity
should be added to the result to obtain the yearly Wolf numbers.

Kozik predicted the following yearly Wolf numbers for the descending
part of the 18th sunspot cycle:

1948 | 1949 | 1950 | 1951 | 1952 | 1953 | 1954 | 1955 | 1958

K e e e e 104 91 79 66 54 41 29 16 4
w C e e e 109 84 63 45 30 18 o 4*
Wobs « + « + » - 136 135 84 69 31 13 4

The last row gives the observed Wolf numbers Wops. Asterisks indicate
the numbers which are low according to Kozik; the table shows that Kozik's
method mostly results in relative yearly spot numbers which are too low.
According to O1' (1954), back calculations of the yearly Wolf numbers
for the descending parts of solar cycles 0 through 18 (Zurich system) ac-
cording to Kozik's method have an overall standard deviation of 10.8. It
is typical that the highest standard deviations are observed for cycles
whose descending parts have sharp fluctuations (cycles 9 and 18), and also
for cycles for which Kozik's relation between K, and ¢, is not val'q (cycles
3 and 4). v
The main advantage of Kozik's method is its simplicity. The m. p dis-
advantages are that it does not take into account the possibility of fluttuations
of Wolf numbers and that the determination of the second break points for low
solar cycles is difficult.

§ 7. The Regression Method

As mentioned in § 1 of this chapter, Ol' (1949a) investigated the reli-
ability of Wolf-number forecasts according to Waldmeier's method. To
do this, O1l' used the cyclic curve for high cycles (Wxy > 100) to obtain the
following forecast for the yearly Wolf numbers in the descending part of
the 18th sunspot cycle (the actually observed numbers are given in paren-
theses):

1948 — 126 (136), 1951—50(69),
1949—101(135), 1952—32(31),
1950~ 176(84), 1958—14(19).

These data indicate that the reliability of this forecast is no lower (especially
after 1950), and in some cases is even higher, than that of Kozik's foreeast.
A further refinement of this method is the regression method developed
by Ol' in 1954 (Ol', 1954). The regression method is based on the fact that
within a given cycle each successive sunspot number can be correlated with
the precedingone. If W, isthe yearly number for a givenyear and W,,, is the
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yearly number after k years, then
Wia=a W+ b, (2.9)

where a, and b, are constants determined from an analysis of the relative
Wolf numbers for the 19 known golar cycles (cycles O through 18 in the
Zurich system). Naturally, only correlations for which the correlation
coefficient was r(W,, W,;)>0.80 were suitable for forecasting purposes.

In contrast to the previous methods, the regression method makes it
possible to predict Wolf numbers not only for the descending part of the
given cycle but also for the rising part as well. This is very sgignificant,
since this method can thus be used at the very beginning of the cycle to
estimate the development of the current cycle.

Let us now introduce the following notation: W, and W_ are, respectively,
the maximum and minimum relative sunspot numbers; W wr 2Nd W are the
Wolf numbers k years after the corresponding epochs of extremum where
for the descending part k=1,2,...,7and for the rising part k=123,

The following relations hold true for the descending part of the solar
cycle:

W, ,=08TW,— 4 r=20.95 o= +10.3
Wy =—0.76W,— 8 r=0.86
W,,s=0.62W, — 15 r=0.88

W =041W, — 7 r=0.74

W,m_o aow,, , — 8 r=0.93 o= +9.2
Wy, =0.72W,, — r==0.93

W =0.50W,, , — 8 r=0.81

W, —0 AW, —12 r=0.78

W, —0 2w, — 7 r==0.60

W, —0 75W”+, 3 r=0.94 o=+73
w, —0 SIW,,,— 2 r=0.84

W, —0 33W s r=20.66 (2.10)
W, -—0 aw, ,— r=0.68 -
W”“_—O.'/BWXN 3 r=0.92 o= +47.1
Wy s=0.58W, — 6 r=0.86

Wy s =0.48W, , —12 r=0.82

Wy =0.44W, ,—13 r=0.76

Wy =076W,  — 3 r=0.89 o=+417.8
Wiye=0868W, ,— 7 r=0.81

Wy =0.52W,  —11 r=0.68

W e =0. 69W,+5 4 r=0.91 o=+35
W””—O.MW‘“ 7 r=0.83

Wy, =08W, ,— 3 r=0.93 o= 141

Here, the correlation coefficients r are given in each case, and the stand-

ard deviations o of the predicted Wolf numbers for cycles 0 through 18 are

indicated for the cases with the highest correlation coefficients. The over-
all standard deviation for this set of Wy 4, values is 7.8. It should be
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noted that the analysis which O1' made of the applications of this method
refers to the most favorable conditions, in which the values are predicted
from year to year (in contrast to the latitude method and Kozik's method).
Naturally, if the forecast is made a longer time in advance, especially for
the entire descending part of the cycle, the results are much poorer since
the correlation is weaker. The regression method does not apply to the
end portion of the descending part of the cycle (k > 4), since here the cor-
relation coefficients for Wy are too small.

As a sample application of this method, we now give the yearly Wolf
numbers forecast for the descending part of the 19th sunspot cycle (O1',
1960): 1961—84, 1962—58, 1963 —36, 1964 —20, 1965—10, The last two
figures were extrapolated on the basis of the shape of the cyclic curve.

As mentioned previously, the regression method also makes it possible
to predict the yearly relative spot numbers for the rising part of the cycle.
In terms of the previous notation, the following equations may be obtained
for the rising branch:

Waie=1.953W_.,+17 r=0.83
Wy =1.502W_..+ 6 r=0.97 (2.11)

W s =3.06TW,.,,+33 r=0.79

The correlation coefficients are indicated for each case. Here there was
no point in computing W,,, since for many cycles W_ =W, so that in
some cycles W _, <<W_  while in others W_  >SW_.,

Back calculations for cycles 1 through 18, using formulas (2.11), gave
the following standard deviations: 13.8, 11.8, and 26.1. The last regres-
sion, of course, is useless for forecasting.

The maximum Wolf number Wl for a given cycle can be computed at the
beginning of the cycle using the following equations:

W,=1.233W_,—W,_)+49 r=087
W,=1622(W,_ ,—W,,)+49 r=087 }

(2.12)

The correlation between W,_,, and W, was found to be insufficient. Back
calculations for cycles 1 through 18 gave standard deviations of 16.7 and
15.8. If we take the average of the results obtained using these two form-
ulas, then we obtain a standard deviation of 15.3.

Subsequent studies have shown that if these theoretically obtained values
W', are subtracted from the observed values W,‘. then the difference
W, —W,=A shows a regular several-year variation (from cycle to cycle).
In order to investigate the regularity of this variation, sets of four values
of A were smoothed and the curve for A® was plotted. This curve can be
approximeted by the following sinusoidal function of time:

A® = —14.5 sin (36t 4 7.2), (2.13)

where ¢ is the time, expressed as the number of the given 11-year sunspot
cycle minus 3 (for example, for the 18th cycle ¢= 15, while for the current
19th cycle t=16). Using formula (2.13), the values of A® were computed
for all known past cycles, and then the values of A were found using the
formula

A= 4A?)—a —(8—s +4, ,+ 4 ,)
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The corrections A improved the accuracy of the forecasts, so that the
standard deviations dropped from 15.3 to 9.5, Let us note that formula
(2.13) can also be used to forecast the value of A for the next cycle (for the
19th cycle, A=36).

Therefore, the regression method enables a fairly accurate prediction
of the rising part of the cyclic curve, but the range of the forecast is lower
than that for the descending part. In practice, the rising part can be pre-
dicted a year, and in some cases two years, in advance.

To illustrate the reliability of a forecast made for the rising part of the
curve using the regression method, let us give the results obtained for the
rising part of the 19th sunspot cycle. It should be noted that according to
various authors the maximum of the 19th sunspot cycle was expected
in 1957, If 1954 is taken as the epoch of minimum, then we obtain
91 (147) for 1956 and 200(190) for 1957. A comparison with the ob-
served values (given in parentheses) shows that the accuracy of this
forecast is satisfactory.

Finally, let us mention that the regression method, when used to
forecast values from year to year, takes the Wolf-number fluctuations
into account, but that it "overcompensates, " since after the fluctuation
the Wolf numbers predicted by this method are generally too high.

§ 8. MacNish's Method

MacNish's method (MacNish and Lincoln, 1949), which is closely re-
lated to the regression method, is based on the following assumptions:

1) in a cyclic time series (for example, the series of Wolf numbers),
any future value can be estimated, to a first approximation, as the average
of all the past values of W for the same phase of the sunspot cycle;

2) this estimate should be corrected in proportion to the deviations which
the earlier values of W in the same cycle show with respect to the corres-
ponding averages.

We then have

Wn =Wn + AW; = Wn + k],u AW-—! + k!. uAWn—! + b

where n is the number of years after the beginning of the cycle, W is the
forecast value of W for the nth phase of the cycle, W, is the average of all
the W, for earlier cycles, AW, ,, AW,,, ... are the differences between the
observed (W) and average (W) values for the phases of the same cycle which
precede the nth phase, and &, ks s ... are forecasting coefficients de-
termined by the least-squares method.

In practice only the coefficient k;,,. is enough, so that the Wolf numbers
may be predicted using the simpler formula

W, =W, +k AW (2.14)

MacNish obtained the following values of ky,p for the years after the
epoch of minimum of the 11-year cycle:

1 2 3 4 5 6
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1t should be noted that MacNish used smoothed yearly relative sunspot
numbers in his calculations.

In order to apply MacNish's method in practice, O1' (1954) computed
the coefficients k;, for the unsmoothed yearly Wolf numbers. A certain
simplification was achieved in the following way. Instead of using the
least-squares method, the average ratios

(Wn)obs -,
(Wam Yobs = Wn—l

werecomputed. Then, a smooth curve was drawn through the values ob-
tained for ky,n, and the following values of k,, were read from this curve:

=kl,u

2 5 6 8 9 10 11

0.6

1 3 4 T

1.1 1.3 1.4 0,7 0.6 0.8 1.0 0.6 0.3 0.0

Back calculations of W’for the years 1934 through 1943 made by Ol' gave a
standard deviation of 7.8 for the yearly Wolf numbers. It is clear that
MacNish's method is essentially just a simplified analytical expression of
the regression method.

Waldmeier (1946) derived forecasting formulas for the smoothed monthly
relative spot numbers. If Wy is the maximum smoothed monthly Wolf num-
ber and Wy, is the smoothed Wolf number k years from the maximum,
then Waldmeier's formulas have the form

W, ,=—0.225W, 1} 51.0,
W,_,=—0.072W,,}- 26.0,

Wya= 0823W,— 14,

W= 0.886W,— 48, (2.15)
W= 0.553W,—10.9,

W= 0380W,— 52,

W= 0.30W,— 74

In § 2 of this chapter Waldmeier's method was discussed, so that there
is no reason to repeat his basic assumptions here. Waldmeier's formulas
(2.15) are externally very similar to those of MacNish's method and es-
pecially to those of the regression method. However, the essential differ-
ence of Waldmeier's method is that in it all the Wolf numbers are expressed
in terms of Wy, with the result that the errors are mainly determined by the
errors in predicting Wy,.

Waldmeier proceeded from hig forecast maximum of Wy,= 139 and his
forecast epoch of maximum of 1947.6 to predict the following smoothed
monthly Wolf numbers for the 18th solar cycle (the observed values are
given in parentheses):

W, ,(1946.6)— 89 (93), W, (1950.6)— 66 (84),
W, (1947.6)—139(152), W, (1951.6)— 48(69),
Wy, (1948.6) — 113 (136), W, (1952.6) — 30(31),
W ;s (1949.6) — 91(135), W, (1953.6)— 17 (13).
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These data indicate that Waldmeier's formulas do not make it possible to
take into account fluctuations for the descending part of the 11-year sunspot

cycle.

§ 9. A Procedure for Forecasting Yearly Wolf Numbers
Within a Given 11-Year Cycle

We have now discussed practically all the methods for forecasting the
yearly (or the equivalent smoothed monthly) Wolf numbers within a given
11-year cycle. These methods are based on Waldmeier's "eruption' hypo-
thesis, with the exception, to some extent, of Gleissberg's method. Mayot's
method (1947, 1951) has not been discussed, mainly due to the very low ac-
curacy of this method and due to the fact that it is essentially similar to the
other methods, so that it is of no real use in forecasting. Moreover,
Mayot's method will be discussed in the next chapter in connection with
medium -period forecasts, in which case it finds successful application.

In an evaluation of the practical application of forecasting methods, first
all their advantages and shortcomings should be examined, then any methods
which give very low accuracy or which are unsuitable for the given specific
problem should be rejected, and finally it should be determined whether the
errors of different methods compensate one another.

Since we are only concerned here with yearly relative spot numbers, the
methods of Waldmeier and Gleissberg are unsuitable for our purposes.
Moreover, MacNish's method in its original form is also unsuitable, and
Ol's modification of this method has no real advantage over the regression
method. Therefore, the following forecasting methods remain: 1) the
cyclic-curve method, 2) the latitude method (Gnevyshev), 3) Kozik's method,
and 4) the regression method.

The cyclic-curve method is complicated and limited in application, on the
one hand, and gives a very low forecast accuracy, on the other. Since the
latter disadvantage naturally does not compensate for the former, the ap-
plication of this method for forecasting seems to us to be inadvisable.

An advantage common to the remaining three methods is their simplicity.
On the other hand, the first two methods (the latitude method and Kozik's
method) can be used to predict the yearly Wolf numbers for the descending
part of the cycle only, whereas the regression method applies to both the
descending and rising parts.

The latitude method pertains to a very limited portion of the descending
part of the cycle (¢<14°), and in this sense it represents only a kind of
supplement to the other methods. This is particularly noticeable for high
sunspot cycles, while for low sunspot cycles the latitude method applies over
a much wider range, as was indicated in Chapter I, § 4.

Kozik's method gives Wolf numbers for practically the entire descending
part of a given cycle. However, for low sunspot cycles the accuracies of
forecasts made using this method are rather low, and it is most effective
for high solar cycles.

A disadvantage of both the latitude method and Kozik's method is that
these methods do not take into account fluctuations in solar activity. Thus,
they both give Wolf numbers which are too low, particularly in the upper
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part of the descending portion of the cycle (the part closer to the maximum).
The regression method gives the best accuracy for Wolf-number predictions
a year in advance. This method, however, virtually does not apply to the
lower part of the descending portion of the cycle (the part closer to the mini-
mum). Contrary to the latitude method and Kozik's method, after a solar-
activity fluctuation the regression method generally gives Wolf numbers
which are too high. For forecasting several years in advance, the regres-
sion method is much less accurate,

Let us now consider directly a procedure for forecasting the yearly Wolf
numbers within an 11-year solar cycle. To predict the Wolf numbers for
the rising part of the cycle, the regression method is generally used. It
should be noted that here a knowledge of at least the approximate time of
the epoch of maximum for the given cycle (for example, gained with the
aid of Waldmeier's method) will be helpful.

To predict the relative spot numbers for the descending part of the cycle,
it is best to use a combination of the latitude method, Kozik's method, and the
regression method, and to take the average of the values of Wobtained using
the different methods. In practice, for high cycles a combination of Kozik's
method and the regression method is generally used, while for low cycles a
combination of the latitude and regression methods is used. In the case of
forecasts for the descending part of the sunspot cycle, the epoch of minimum
must be known, and for this ultralong-range forecasts are generally made
use of. Consequently, we will return to this problem in Chapter IV,

The preceding methods make it possible to forecast the Wolf numbers for
almost the entire 11-year sunspot cycle. However, in practice, it is equally
important to make high-accuracy forecasts one year in advance, and, as ob-
served previously, the regression method is the most effective in this re-
spect. On the other hand, since this method ''overcompensates'' for fluctua-
tions in gsolar activity, we should not neglect the possibility of using Kozik's
method, and in some cases the latitude method, to make the prediction more
accurate.

Finally, still another comment on the methods to be used will be apropos.
Since quite considerable unexpected jumps in the value of coefficient k of
formula (1) in the Introduction are sometimes possible, even when the Wolf
numbers are determined at the same station by the same observer, it is very
desirable to make an annual comparison between the Zurich system of rel-
ative spot numbers and the system which is used directly to predict the
future course of the current cycle.
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Chapter III

MEDIUM-PERIOD FORECASTS OF
SOLAR ACTIVITY

§ 1. General Considerations

As mentioned in the Introduction, medium-period forecasts of solar
activity here refer to forecasts of the monthly and quarterly solar indexes.
The following discussion will be limited to the prediction of relative spot
numbers.

From Tables I and III of the Appendix we see that the quarterly, and
especially the monthly, Wolf numbers fluctuate a great deal. Because of
this, the prediction of these numbers is quite difficult, and when fluctuat-
ing solar activity is involved the forecast values usually have considerable
error.

In contrast to the yearly Wolf numbers, which can be forecast several
years in advance, the monthly relative spot numbers (provided smoothed
values are not taken into account) can be obtained, using the methods avail-
able so far, no more than one month in advance. The situation is some-
what better for the quarterly Wolf numbers. However, the errors involved
in all the methods of medium-period forecasting are rather high, so that
these predictions are less useful than those of the yearly relative spot num-
bers.

Since several methods for forecasting the quarterly and monthly Wolf
numbers are based on Mayot's fundamental concept, let us start by discuss-
ing his method, although actually this method was originally developed for
the monthly relative spot numbers and should thus be considered in a some-
what later context. It should be noted that Mayot later extended his method
to yearly Wolf numbers as well, but the accuracy of the method was in this
case so low that this application hardly deserves consideration,

§ 2. Mayot's Method

Mayot (1947) starts from the assumption that a multiannual series of
Wolf numbers is representable in the form

W ({t)=F(t)+ E, (3.1)
where F (f) is some sum of trigonometric or exponential functions and E is
some random quantity.
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In this case the quantities Wj can be written as

Wi=aW, ,+aW, s+ ... +aW,te,
Woa=aW+aW, 1+ ... feW,+e, (3.2)
We=aW. +}aW.o+t... ;eWe, e

The coefficients a4, @,..., ai are determined by the least-squares

n
method, assuming that the sum 2 ei is minimized.
k=t

Originally Mayot's method was developed for the smoothed monthly
Wolf numbers, which differ from the observed numbers in that they are
much less subject to fluctuation. In calculations for past cycles this
method gave the very low standard deviation of +1.9. For forecasting,
however, Mayot's method is much less accurate.

Since Mayot's formula for the prediction of the smoothed monthly
Wolf numbers was incorrect (Vitinskii, 1956a), it will not be given here,
However, the correct formula will be given below, during the discussion
of the corresponding method for forecasting the smoothed monthly relative
spot numbers.

Another factor deserves mention at this point. Mayot tried to predict
the Wolf numbers for the same months in different years, and his back
calculations of the relative spot numbers for January from 1896 to 1944
gave a standard deviation of £9.2. However, when it came to forecasting,
the error was once again considerably higher. Moreover, in this case the
basic premise of Mayot was false, in that a yearly variation in Wolf num-
ber is by no means observed in every cycle, and also in that the variation
is so slight that it can hardly be used as a basis for computations.

Mayot's method, as mentioned above, involves considerable error when
used to forecast the quarterly and monthly Wolf numbers. However, since
these numbers may deviate in either direction by 20 to 25%, due to random
variations in coefficient k {as will be shown below), the accuracy of the fore-
cast may still be adequate. Thus the application of Mayot's method for
medium-period forecasting is completely justified. Finally, with respect
to the forecasting of monthly relative spot numbers, Mayot's method is
unique.

§ 3. Forecasts of Quarterly Wolf Numbers
for the Next Quarter

Vitinskii (1956b, 1960a, 1961c) has proposed three methods for fore-
casting the quarterly Wolf numbers for the quarter to come, namely the
regression method, Mayot's method, and the modified Mayot method. Let
us first consider Mayot's method, the application of which, as noted in the
previous section, involves the solution of a system of equations such as
(3.2). Such a system of equations can be solved only if the coefficients of
the normal equations are sufficiently separable. Consequently, it is advis-
able to utilize material covering the period up to the epoch of maximum or
near it, since it is just at this epoch that the Wolf numbers are large enough
to satisfy this requirement. Vitinskiiusedthe Zurich quarterly Wolf numbers
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for the years 1944 through 1959, By solving a system of equations of the
form of (3.2), he obtained the following formula, which can be used to fore-
cast the quarterly Wolf numbers for the following quarter:

W, = 0.92W, - 0.04W, 4- 0.25W, — 0.24W,. (3.3)

Back calculations for the years 1945—1959, made using relation (3.3),
gave a standard deviation of +24, with W5 106 (a relative standard devia-
tion of £24%). It should be noted that the largest deviations between the
computed and observed values correspond to the period of strong Wolf-
number fluctuations. In such cases the relative error reached 47 %.

The modified Mayot method is also based on Mayot's original assumption,
but in contrast to Mayot's original method it does involve the use of the
quarterly Wolf numbers themselves but rather the deviations of these from
some mean curve. This was done in an attempt to improve the separation
of the coefficients of the normal equations when using the Zurich data for the
years 1940 through 1955.

The mean curve for the Wolf numbers was obtained as follows. Let us
assume that the average length of a sunspot cycle is 11 years, as shown by
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observations. Then, for such a cycle we can plot an average curve for the
yearly relative spot numbers, using Stewart and Panofsky's formula (1.10)

with a=+7.1832 and b=+1.2013 (Gleissberg, 1951a). Here, it is conveni-

ent to take the cycle intensity as Wy= 100, so that F=0.3473. The quantity
8 is reckoned from the epoch of minimum.

If we assume that @ and & are constant for all cycles, then we can norm-
alize this curve for each specific cycle, using the ratio of its intensity to
Wux=100. The cycle intensity is determined as the average of three yearly
Wolf numbers, namely those measured at the epoch of maximum, one year
before it, and one year after it. For the current cycle this curve was plot-
ted using the forecasts of these numbers obtained using the methods dis-
cussed in Chapter II. Figure 10 shows examples of these curves for cycles

17, 18, and 19.
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Next, let us read off the smoothed quarterly Wolf numbers W, from the
mean curves and then plot the differences between these numbers and the
observed relative spot numbers W§:

AW, =W'—W,, (3.4)

If we golve a system of equations of the form
AW.;= a,AW.-_l + a’AW,-_' + cesn + a‘AW‘, + .‘~ (3 « 5)

by the method of least squares, then we can obtain the required formula
for the prediction of AW,;. Let us consider a solution of system (3.5) in
six unknowns. In this case we obtain

AW, =0.64AW ¢ - 0.17AW -} 0.20AW, — 0.22AW,, (3.6)

where AW, and AW, are negligible and so have been omitted. After reading
off the corresponding value of W, from the mean curve, we can obtain the
quarterly Wolf number from the formula

W,=W, -+ AW, (3.6a)

Back calculations of the Wolf numbers for the years 1941 through 1955,
made using formulas (3.6) and (3.6a), gave a standard deviation of %20,
with an average quarterly Wolf number W, of 61 (relative standard deviation
of £33 %).

The modified Mayot method, as the preceding figures show, has only a
relatively low accuracy. This is to a large extent due to the fact that this
method is more or less a combination of two methods. On one hand, it
uses the Stewart-Panofsky curve, which is based on ultralong-range fore-
casts for the current cycle; on the other hand, it includes a forecast for
the perturbed part AW,. Consequently, the accuracy of this method should
be expected to be lower than that of each of its component methods. Also,
one of the defects of the modified Mayot method is that it is quite unsatis-
factory for predicting the quarterly relative spot numbers during periods of
strong fluctuation.

The regression method (Ol', 1954) for forecasting yearly Wolf numbers
can also be applied successfully to the prediction of quarterly numbers, as
a statistical analysis of the Zurich data for 19 incomplete solar cycles has
shown. In order to apply the regression method, we require a quite accurate
knowledge of the epochs of maximum and minimum of the solar cycles. The
methods for forecasting these quantities will be discussed in Chapter IV, so
that they will not be considered here. Let us just observe that the accuracy
involved in determining the epochs of extremum up to one quarter is perfectly
satisfactory.

An examination of the Zurich data for the rising parts of 19 solar cycles
gave the following regression equations, correlation coefficients r, and
standard deviations o:

Wy =1.08W, + 4 r=-055
Waiy =1.36W,,, + 3 r=-+40.70
Wy =0.60W,,, + 3 r=-4081
Woeo =1.08W,,s + 5  r=-+40.71
Wy =1.42W,.,, r=4-0.89

(3.7)

i

H H H H H
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W, =120W, s + 6 r=-}0.92 a==+10
W =1 1IW_ o + 7 r==-0.90 o= +12
Wy =1.13W,, 4 4 r=-0.94 o= 412
Wow =0.98W_,, 4-12 r==-4-0.91 a=+415
Weono=14TW oy — 7 r=-40.94 o= 417
Worn ==0.96W ., + 11 r=-0.95 a=+17 G.7)
Wy =1.26W 1 — 2 r=-0.97 o= +13 ’
W1y =1.09W o — 3 r=+40.97 o=+10
W =1.18W _,— 8 r=-0.96 o= +14
W5 =092W_ .+ 9 r=--0.90 o= 411
W= 1.40W . — 10 r=-4-0.88 o= +145
Wy =1.20W_ s+ 1 r=--0.97 a=+ 9

It is clear from relations (3.7) that the forecasts of the quarterly Wolf
numbers for the first four quarters are not reliable enough. For the
entire rising part of the cycle, we have =112, with W‘= 49 (relative

standard deviation of +24%).
Analogously, for the descending part of the cycle we obtain the following

regression equations:

W, ,=092W, —13 r=-0.96 o= 412
Wi e=086W, + 4 r=-40.95 o= +12
Wy s=094W, | 8 r=-0.90 a=+18

M3
W oo =092, 12 r=-0.85 c=+22
W =O'72WH+¢+21 r=-10.82 o=+21

Mty
Wy =0.76W, 12 r=--0.78 o= +23

Wy ==0.90W, -+ 4 r=-0.87 o=+19
W ys =0.80W . 412 r=-{0.9%1 s=+415

W =090W, + 1 r=-4092 o=+13

Wiyo=0.79W_ . 4 6 r=--0.92 o= +11
W oy =0.84W, 410 r=-0.71 o= 119 (3.8)
Woyo=082W_ . 1 2 r=--0.88 o= +14

Wl+13 = 0'76Wx+1z + 6 r—=--0.86 o= +12
W ys=0.6TW,, s+ 8 r=-4-0.89 o=+ 8
Wi =0.98Wy,,, — 1 r=-40.90 o=+ 9
Woyae= W s r—=-+10.84 o= +14

Wy =07W, 4 4 r==-40.86 o==+11
Wis =0.74W,, .+ 8 r=--0.81 o= +114
Woa=0.60W, .+ 1 r=-4-0.88 o=+ 8
Woyso=1.10W, . — 2 r=-40.96 a=+ 5
Wiy =088W, . — 1 r=-140.92 o=+ 6
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Wies=08W, o+ 1 r=-4092 o=+ 6
Wies=070W, .+ 1 r=4083 o=t 35
W.“‘ = 0.89W'+” r=-408 o=+417 (3.8)
W =0.70W, r=-+4088 o=+ 6
Wm_s = 1'02WH+ll r=-+40.85 o=+ 7

For the entire descending part, 6= 14, with W‘= 52 (relative standard
deviation of £27%).

A comparison of the accuracy of these three methods, on the basis of
an analytic treatment of previous observations, shows that the regression
method and Mayot's method involve smaller errors than the modified Mayot
method. Moreover, if we take into account that for Mayot's method the
error increases appreciably upon transition from back calculations to fore-
casts, then it is clear that the regression method should be considered as
the most effective. Unfortunately, however, for solar cycles with long
rising parts (longer than 17 quarters) or with descending parts longer than
26 quarters, only the ordinary and modified Mayot methods can be used for
the quarters involved.

Let us also mention one technical detail which pertains to all the methods
for predicting quarterly Wolf numbers for the quarter to come. Since the
forecast must be made at the end of the preceding quarter, preliminary
values of the quarterly relative spot numbers for 83 or 84 days (out of 90
or 91 days) are used. In general, this has little effect on the forecast ac-
curacy, except in cases of strong solar-activity fluctuations.

Finally, data are now available which make possible an estimation of
the accuracy of forecasts of the quarterly Wolf numbers made using the
modified Mayot method. An analysis of the figures for the period from the
first quarter of 1956 to the third quarter of 1960 gives a standard deviation
of £27, with W,= 162, so that (1 —7-)100%=84%. This is much higher
than the value (1 —v—;;) 100% = 67 % obtained from back calculations.

§4. Forecasts of Quarterly Wolf Numbers
Two Quarters in Advance

For various practical purposes, especially for certain problems in
geophysics and radiophysics, it is very important to forecast quarterly
Wolf numbers a longer time in advance. A direct attack on this problem,
by means of repeated or even double forecasting, leads to considerable
error and is thus not practicable.

First, let us restrict our discussion just to forecasts of the quarterly
relative spot numbers two quarters in advance. In addition, let us introduce
the following quantities: the ordinary semiannual Wolf numbers Wj; the semian-
nual Wolf numbers W} obtained when the half-years are shifted backone quarter
(which will be called the special semiannual Wolf numbers); the observed
quarterly Wolf numbers W9; and the predicted quarterly Wolf numbers W,

Vitinskii (1960, 1961c) has proposed two ways of solving this problem.
The first alternative is a prediction of the ordinary and special semiannual
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Wolf numbers, which are then combined with the quarterly observed Wolf
number in order to forecast the quarterly relative spot numbers two quarters
in advance. In order to do this, the following formulas are used:

W, =2W; —2W, Wi,
W, =2W, —2W WP, 3.9)
Wiy =2Wy, —2W; +Wj,
W, =2W,— Wy, WY,

where gubscripts I and II of PV; and W"' indicate the corresponding half-
years, while subscripts I through IV of W, and Wf indicate the quarters of
the year,

The second alternative consists in a predictionof the ordinary and special
semiannual Wolf numbers, and also of the quarterly Wolf numbers, after
which these are combined in order to forecast the quarterly relative spot
numbers, using the formulas

I’VI =2W; —er,
Wy =2W; —W; , (3.10)
Win=2Wy—Wy,

Wy=2Wn—Wmn.

As mentioned previously, for this type of forecast an advance determina-
tion of the semiannual Wolf numbers is necessary. Either of two methods
can be used for this, namely the regression method and Mayot's method.

On the basis of the Zurich data for 19 incomplete cycles, the following
regression equations were obtained for the rising and descending parts of
the solar cycle {the corresponding values of r and ¢ for the ordinary semi-
annual Wolf numbers are also given):

w’ =1.53W; + 3 r=—|—0.64 o=+ 5

m+l
W, =130W., 4+ 6 r=-4059 o=113
W, =121W, , +12 r=+4081 o=+14
W, =128W.+ 9 r=4089 o= 116
W, =125W., + 7 r=409 o=x14
W, =101W, , +14 r=-4092 o=+17

(3.11)

W, =14W, , + 2 r=+096 o=z+14
W, =13W,, — 8 r=408 o=2z18
W, =08iW, — 7 r=-4093 o=z312

Wi, =0.96W, 4 1 r=+409% o=+15
Wis =0.79W:'+’ +11 r=+4084 o=+12 | (3.12)
Wi, =084W, + 2 r=-+4096 o=410

Wi =08W, , — 6 r=43409 o=+ 9
Wi =0.76W, . 4 5 r=-4092 o=+ 9

54



Wi,y =0.8TW), r=-40.89 o==+10

Wi,y =058W,, + 8 r==4080 o==1+ 6

W, =08Wy, + 1 r=+4073 o=+12 (3.12)
W,X+lo = 0'77W;y+. r= +0-89 o=+ 8
W;lﬂl = 0'82W;!+1. r= +0.91 e=+ 6

An analysis of past data for the rising part gave a standard deviation of
+14, with W;= 51 (relative standard deviation of +27%). For the descend-
ing part of the cycle, the standard deviation was +10, with W= 56 (relative
standard deviation of £+18%). It should be noted that, according to (3.11),
the forecasts of Wj for the first two half-years of the rising part are un-
reliable. '

For the special semiannual Wolf numbers, use of the same dataledto the
following regression equations (and values of r and @) for the rising and de-
scending parts of the solar cycle:

W, =133W. + 5 r=4058 o=+ 6

w4l
W:H_z =.1.72W:|+1 — 1 r=-0.81 o=+ 9

W, =170W , 4+ 4 r=40.93 o=+10
w, ., =132W. , +10 r=409% o=116
I’V’"M_5 =1'2OW;H + 5 r—=-40.96 o= +12 (3.13)
Wie=11TW,  — 3 r=409 o=+17
w,,,=10Ww, 414 r=+4095 o=415

mt7
Wi, =120, + 9 r=+408t o==17
W, =098W7  — 1 r=-1080 o= 17
W;f+l =O'82W;; r= +0.96 o= +10
Wis = Wi r=-4093 o=+14
Wiys =0TTW5,, +10 r=-40.92 o=112

Wy, =112W5,,, —17 r=4092 o= 113
Wi =06TW,, — 9 r=-4088 o=+12
Wie =096W, . — 9 r=4083 o=+13

a3
Wiy =058Wy, +10 r=-+4094 o=+ 7 (3.14)
Wie =0.98W5,, — 1 r=-084 o=+11
W;f+l = 0'62W;r+a + 5 r=-0.80 o==+10
Wiro =0TTW3 o — 2 r=409 o=+ 6
Wi =0.75W5, r=409 o=+ 4
Wiy =088W5, — 2 r=-409 o=+ 4

In this case the standard deviation for the rising part was +13, with W"'=
=51 (relative standard deviation of +25%). For the descending part of the
cycle, the standard deviation was +11, with Wi=52 (relative standard
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deviation of +21%). Relations (3.13) show that the forecasts for the first
special half-year of the rising part are unreliable.

Mayot's method was applied to predictions of the ordinary and special
semiannual Wolf numbers in the Zurich system for the years 1935 through
1959. In both cases these data ensured a satisfactory separation of the
coefficients of the normal equations. To forecast the ordinary semiannual
relative spot numbers, we can use the relation

Wi = 1.22W; 4 0.09W; — 0.28Ws — 0.10W}. (3.15)

Back calculations using this formula gave a standard deviation of £19, with
W= 82 (relative standard deviation of +23%).

The special semiannual Wolf numbers can be forecast using Mayot's
method by means of the relation

W2 =0.91W" 4 0.60W’ — 0.3TW — 0.22W7, (3.16)

Here the standard deviation was +21, with Wi=80 (relative standard devia-
tion of 26 %).

It follows from the preceding that eight different methods can be used to
forecast the quarterly Wolf numbers two quarters in advance:

1) the regression method for the ordinary and special semiannual Wolf
numbers, using formulas (3.9), (3.11), (3.12), (3,13), and (3.14);

2) Mayot's method for the ordinary and special semiannual Wolf numbers,
using formulas (3.9), (3.15), and (3.16);

3) the regression method for the ordinary and special semiannual Wolf
numbers plus the modified Mayot method for the quarterly Wolf numbers,
using formulas (3.10), (3.11), (3.12), (3.13), (3.14), (3.6), and (3.6a);

4) the regression method for the ordinary and special semiannual Wolf
numbers plus Mayot's method for the quarterly Wolf numbers, using formu-
las (3.10), (3.11), (3.12), (3.13), (3.14), and (3.3);

5) the regression method for the ordinary and special semiannual Wolf
numbers plus the regression method for the quarterly Wolf numbers, using
formulas (3.10), (3.11), (3.12), (3.13), (3.14), (3.7), and (3.8);

6) Mayot's method for the ordinary and special semiannual Wolf numbers
plus the modified Mayot method for the quarterly Wolf numbers, using
formulas (3.10), (3.15), (3.16), (3.6), and (3.6a);

7) Mayot's method for the ordinary and special semiannual Wolf numbers
p'us Mayot's method for the quarterly Wolf numbers, using formulas (3.10),
(3.15), (3.16), and (3.3);

8) Mayot's method for the ordinary and special semiannual Wolf numbers
plus the regression method for the quarterly Wolf numbers, using formulas
(3.10), (3.15), (3.16), (3.7), and (3.8).

Each of these methods [or combinations of methods] has its advantages
and its defects. Let us first note that methods 3, 4, and 5 involve much
lower errors than the other methods. For example, back calculations for
the years 1945 through 1959 gave the following standard deviations ¢ and
predictabilities

(1 -——%,—‘_) 100/,
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o (- F—:;) 100, G (- ‘=‘;i) 100%

1y :36 66% 5) +25 6%
2  +44 55 6) +36 63
3) 31 70 T 32 67
4) 26 75 8) :41 59

Methods 1, 3, 4, and 5 are based on the regression method, a method
which can be used only to determine time intervals away from the epochs
of sunspot maximum and minimum (4.5 years and 6 years respectively).
Thus, for example, these methods could not be applied to the back calcula-
tions for the period from the fourth quarter of 1953 to the fourth quarter of
1954,

Another important factor concerning the regression method also de-
serves mention, namely that this method cannot be used unless the epochs
of extrema of the solar cycle are known in advance. There are methods
available, however (see Chapters IV and V), which make it possible to de-
termine these epochs to within a half-year,

The regression method is much less sensitive to strong fluctuations than
Mayot's method, as is evident from a comparison of the corresponding rela-
tions.

We have already discussed some defects of Mayot's method. However,
let us now consider one defect of the modified Mayot method which is par-
ticularly influential when this method is combined with Mayot's method for
the semiannual Wolf numbers. The quarterly relative spot numbers calcu-
lated using this method are generally too high for the very beginning of the
rising part of the cycle, and this lowers appreciably the quarterly numbers
forecast two quarters in advance by means of method 8. In this case the
very rough approximative correction of + 44 should be introduced for the
first two years of the cycle. This method reduces the standard deviation
from +38 to £26, but it still represents only a very rough approximation.

Since Mayot's method involves higher errors than the regression method,
it is only natural to assign higher weights to methods 1, 3, 4, and 5, which
are based on the regression method. In order to increase the accuracy of
the forecasts of the quarterly Wolf numbers two quarters in advance, it is
necessary to take the average of the values obtained using the various meth-
ods, weights of 2 being assigned to methods 1, 3, 4, and 5, andweightsof 1
being assigned to all the other methods. Back calculations for the years
1945 through 1959 have shown that this procedure will reduce the error ap-
preciably. The standard deviation of these averaged predicted quarterly
Wolf numbers was +25, with W,= 98, giving a predictability of 75 %, This
value is quite acceptable, provided it is taken into account that the methods
for forecasting the quarterly Wolf numbers for the quarter to come have
practically this same predictability. However, the main disadvantage of
such calculations, namely the large forecasting errors during times of
strong fluctuations, still has its effect in this case.

§ 5. Forecasts of Smoothed Monthly Wolf Numbers

As mentioned in § 2 of this chapter, forecastis of smoothed monthly Wolf
numbers were first developed by Mayot (1947). On the basis of the same
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initial data as Mayot (for the period from 1931 to 1944), Vitinskii derived
the following formula for the prediction of the smoothed monthly Wolf num-
bers W" one month in advance:

Wy==0.99W, -} 1.22W, — 1.70W, }- 0.49W, | (3.17)

to replace the incorrect formula of Mayot. Back calculations for these
years, using formula (3.17), gave a standard deviation of +1.9, Such a
low error makes this method seem very attractive, but, on the other hand,
certain properties of the calculation of smoothed relative spot numbers
lead us directly to a very grave difficulty.

We know that the quantities W, are usually determined using formula (2)
of the Introduction. It is clear from this formula, however, that the
smoothed monthly Wolf numbers cannot be obtained earlier than six months
before the given time. If all these Wolf numbers are calculated successively
using Mayot's method, then the cumulative error will be so great that any
advantages of this method (with regard to accuracy) will be reduced to
naught. To overcome this obstacle, Vitinskii (1956¢) proposed using the
correlation between the observed and smoothed monthly Wolf numbers. The
corresponding correlation coefficient is r=+0.93 and the regression equa-
tion is

W, —0.98W, 2. (3.18)

This procedure naturally lowers the accuracy of the predictions made
according to Mayot's method, especially in cases of solar-activity fluctua-
tions, when the smoothed relative spot numbers obtained from (3.18) may
be exaggerated considerably. However, the errors in this case are never-
theless lower than those entering in when the alternative method, proposed
by Mayot, for predicting the Wolf numbers of the same months in different
years is used. A purely technical detail should also be noted, namely that
to make forecasts using this method it is quite sufficient to have preliminary
monthly relative spot numbers for 23 to 27 days (out of 30 or 31 days).

An examination of the data for the period from January 1956 to October
1959 has shown that Mayot's method for forecasting the smoothed monthly
Wolf numbers for the following month gives a standard deviation of + 27,
with W; = 168 (an average predictability of 84 %).

We have already mentioned that the use of equation (3.18) may introduce
false fluctuations into forecasts of the smoothed relative spot numbers.

This is illustrated by Figure 11, in which the solid curve represents the
variation of smoothed monthly Wolf numbers for 1956 and 1957 as com -
puted from observed quantities, while the dashed curve gives the Wolf
numbers predicted using Mayot's method.

In order to eliminate this defect and (which is no less important) to in-
crease the forecast range for smoothed monthly Wolf numbers, Vitinskii
proposed a regression-interpolation method which has the advantages of
simplicity and quite good accuracy. This method will now be described.

In the preceding section we discussed the regression method for ordinary
and special semiannual Wolf numbers. Semiannual relative spot numbers
can be considered as characteristic smoothed quantities, since they rep-
resent an average of six monthly values of the given solar index. There-
fore, these nurnbers can be used to predict the smoothed monthly Wolf num-
bers. Once we know the semiannual Wolf number for the first half of a
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given year (referred to April), and once we have forecasted the semi-

annual Wolf number for the second half (referred to October), using the

regression method, it is possible to obtain by interpolation predicted
smoothed Wolf numbers for July, August,

September, and October of this year.

Analogously, on the basis of the special pre-

dicted and observed semiannual relative

spot numbers, we can estimate in advance

the smoothed Wolf numbers for October,

November, December, and January, or

April, May, June, and July. By means of

the ordinary semiannual numbers, we can

obtain values of the given index for January,

600} February, March, and April.

WY Thus, the regregsion-interpolation method
ot L LU LLLLLS. - gkes it possible to predict the smoothed
ry v;gglg Xy %551 wi monthly Wolf numbers for the least favorable

FIGURE 11 cases (February, May, August, and Novem-
ber) two months in advance, and sometimes
even four months in advance (for March, June,

September, and December), The variationof the predicted smoothed monthly

relative spot numbers is much smoother than that obtained when Mayot's

method is used. This is clear from Figure 11, in which the variation of the
numbers computed using the regression-interpolation method is shown by
the dash-dot line.

Back calculations for the period from January 1956 to October 1859, made
using this method, gave a standard deviation of £12, with W,= 168 (average
predictability of 93 %). If we take into account that the regression-interpola-
tion method also increases the forecast range for the smoothed monthly
Wolf numbers considerably, then the advantages of this method over Mayot's
method become quite obvious.

Let us now consider the method, developed by Herrink (1958, 1959), for
forecasting the smoothed monthly Wolf numbers up to the end of the current
solar cycle. This method is based on a suggestion made by Anderson (1954)
that there may exist a 169-year cycle of solar activity, since the Wolf num-
bers for the periods 1749 to 1785 and 1918 to 1954 show a quite close cor-
respondence. Herrink compared the smoothed monthly relative spot num-
bers at the beginning of the rising parts of cycles 4 and 19, taking July
1784 as the beginning of the 4th cycle and April 1954 as the beginning of the
19th cycle. He obtained the following regression equation:

W o= 1.488W, —12.5. (3.19)

Here, the subscripts indicate which 11-year cycle is referred to.

A forecast made according to this formula gave a standard deviation of
only £1.6. In an attempt to increase the forecasting accuracy, Herrink
used the data for the period from April 1954 to October 1958 and obtained
the new regression equation

Wi =1.52TW,—13.4. (3.20)
This equation differs only slightly from equation (3.19). Equation (3.20)

can be used to forecast the smoothed monthly Wolf numbers up to the end
of the 19th cycle.
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Table 10 lists the smoothed monthly Wolf numbers predicted for 1957
and 1958 according to formula (3.19) (columns pred.) and for the years 1959
through 1967 according to formula (3.20). The observed values for 1957 and
1958 are also given (columns obs.), Starting with November 1966, formula
(3.20) gives negative values, and Herrink replaced these by zeros.

TABLE 10

Predicted smoothed monthly Wolf numbers for 19th cycle (Herrink)

19517 1958
Month 1959 | 19601 1961 | 1962 [ 1963 | 1964 | 1965 |1966] 1967

pred.| obs, | pred. | obs,

I 172 { 170 196 198 164 1317 93 81 62 46 29 15
It 175 | 172 189 199 163 136 91 80 61 49 28 14
II1 182 | 177 187 203 168 129 89 79 59 50 23 11
v 185 | 183 180 198 165 122 /‘8’7 78 58 41 19 11
\ 184 | 187 179 191 167 117 | =86 71 57 46 19 9
VI 188 | 189 178 189 163 111 8?1 76 55 43 16
VII 191 | 191 176 187 160 108 8 15 51 40 19
Vil 189 | 190 1717 182 157 106 85 73 52 41 19
IX 191 | 194 178 183 153 103 83 |¢ M 50 36 16
X 196 | 194 174 181 147 100 81 70 49 33 11
XI 197 { 197 169 181 143 97 80 68 48 31 16
X1t 197 { 197 167 180 140 95 82 64 46 28 15

OO OO0 00000 o O

O O == Na;e

For all its attractiveness, Herrink's method has the following two seri-
ous defects.

1. It presupposes the existence of a 169-year cycle, but does not take
into account the 80-year to 90-year cycle, the existence of which has been
quite reliably established. Consequently, its flexibility is somewhat limited;
strictly speaking, it applies only to the 19th cycle and not even to all of it.

2. Herrink's assumption that the descending parts of cycles 4 and 19
have the same length is definitely an arbitrary one. Many authors have
placed the epoch of minimum of the 20th cycle no later than 1966, and ac-
cording to O1' (1960) it will be 1965.2. Therefore, the values forecast for
1964 and 1965 are apparently too high.

Nevertheless, if suitably modified, Herrink's method can be used to
predict the smoothed monthly Wolf numbers and the quarterly Wolf num-
bers not only for the 19th solar cycle but also for any other cycle, particu-
larly for a cycle of higher intensity.

§ 6. Forecasts of Observed Monthly
Wolf Numbers

As mentioned in the Introduction, the observed monthly Wolf numbers
fluctuate greatly. Therefore, the prediction of monthly relative spot num-
bers, even just one month in advance, is a quite complicated problem.
Forecasts with errors up to 25% may thus be considered quite acceptable,
since the monthly Wolf numbers are uncertain within this margin.

The only method for forecasting the monthly Wolf numbers for the month
to come is Mayot's method. Using the Zurich data for 1951 through 1956,
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Vitinskii (1960a) obtained the following equation for the prediction of
monthly relative spot numbers:

W= 0.81W, — 0.14W, 1-0.51W, — 0.19%,. (3.21)

Back calculations for 1944 through 1956 made using this formula gave a
standard deviation of +22 (relative standard deviation of 27 %),

Later, in order to ensure a more reliable application of Mayot's method,
the following equation was derived from the Zurich data for 1954 through

1958
Ws=1.32W,— 0.61W,4- 0.82W, — 0.52W, (3.22)

and it represents a better characterization of the current cycle. For back
calculations this equation gave a standard deviation of +22 with W,=123
(relative standard deviation of 18%).

Mayot's method gives the highest errors during periods of strong fluctua-
tion in solar activity. Consequently, certain artificial procedures have been
introduced to increase the forecast accuracy for the monthly Wolf numbers.
First let us note that so far it is still impossible to foresee the onset of a
strong fluctuation with any reliability at all, even with an accuracy up to
one quarter. The methods described in the following thus only are intended
mainly to predict the duration of a fluctuation.

An analysis of the statistical data shows that, exceptinrarecases, a sharp
increase in solar activity is followed by a drop in activity during the next
month. Therefore, to a first approximation, we can neglect such rises in
activity and we can utilize for forecasting purposes only the general upward
or downward trend of the activity curve for the given cycle.

The next approximation will consist in taking into account the develop-
ment of long-lived sunspot groups, since fluctuations in solar activity are
often determined by these groups. In Chapter I, § 5 the main features of
the development of long-~lived spot groups were described, and these fea-
tures can be used to obtain purely qualitative estimates of the rate of drop
of solar activity toward the next solar rotation.

Finally, still another approximation is possible, in view of the fact that
active longitudes have a quite considerable effect on fluctuations in solar
activity. A study of the processes related to active longitudes has shown
that these are rhythmic, with an average period of 4 or 5 solar rotations
(Vitinskii and Rubashev, 1957), Since, at any given time, one of the exist-
ing active longitudes predominates, therefore we can in general predict
with some reliability approximately when a fluctuation in solar activity is
to be expected. However, an important reservation must be made here.
The active longitudes in the aforementioned reference were studied using
the spot-group areaas anindex, and the behavior of this index is different
from that of the Wolf numbers., Therefore, the conclusions obtained can-
not be reliably applied to forecasting of the Wolf numbers rather than the
areas.

Finally, let us estimate the accuracy of forecasts of the monthly Wolf
numbers made for the following month, using Mayot's method. An analysis
of the data for the period from July 1957 to September 1960 gives a stand-

ard deviation of +28, with W,= 168 (so that (1 —%‘)100% =83%). This is

somewhat better than the figures obtained for back calculations, a situation
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contrary to what is generally expected of Mayot's method for predicting
the smoothed Wolf numbers. It should also be mentioned that so far no
method is known which makes it possible to forecast the observed Wolf
numbers two months or more in advance,

§ 7. The Analog Method for Forecasting
Quarterly Wolf Numbers

A somewhat modified form of Herrink's method, which was described
in § 5 of this chapter, makes it possible to forecast the quarterly Wolf num-
bers for the entire descending part of the current cycle. In view of the
previously cited defects of this method, however, let us here proceed from
basic premises which are somewhat different. First let us note the follow-
ing two facts:

1) one of the most important characteristics of the solar cycle (Xanthakis,
1959) is the length of the rising part of the cycle;

2} the lengths of the descending parts of analog cycles usually differ
from those of the prototype cycle, so that these lengths can be determined
only by means of the existing methods for forecasting the epoch of minimum
of a solar cycle.

Since the method proposed by Vitinskii (1960e, 1961c) starts by selecting
an analog cycle for the given cycle, therefore this method will be called in
the following the analog method. The analog cycles will be chosen according
to two criteria: first, equality (or at least approximate equality) of the
lengths of the rising parts of the test cycle and the given cycle; and second,
the closest possible correlation between the quarterly Wolf numbers for the
rising parts of the two cycles. The rising part of the test cycle must be no
more than one quarter longer than the rising part of the given cycle. Even
if all the correlation coefficients are high, still only the cycle with the very
highest r is selected. If more than one cycle has the same [highest] correla-
tion coefficient, then all these are used.

The adoption of this procedure, and the rejection of Herrink's basic
premises, are completely justified. Actually, if the existence of a 169-
year solar cycle is assumed, then the analogs of the 17th and 18th 11-year
cycles are the 2nd and the 3rd cycles. However, Vitinskii has shown that
the analog of the 17th cycle is really the 10th cycle, while that of the 18th
cycle is the 11th cycle. Moreover, cycles 4 and 13 can equally well be
considered as analogs of the 19th cycle.

In order to forecast the quarterly Wolf numbers for the descending part
of the cycle, right to the end of the cycle, a regression equation must be
derived from a comparison of these numbers for the rising parts of the
given cycle and the analog cycle (as was done by Herrink for the smoothed
monthly relative spot numbers). Back calculations for the descending parts
of cycles 17 and 18, made using the regression equations obtained for these
cycles, gave predictabilities of 63% and 72%, respectively. The difference
in predictability is due to the fact that less strong cycles fluctuate more,
and to the fact that the periods of strong fluctuations in different cycles
seldom coincide to within one quarter.
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Onthe basis of the analog method, Vitinskiiobtained the following regression
equations for the 19thcycle:
Wy, =1.49W,+4-2, (3.23)

Wiy=2.41W,; 42, (3.24)

where the subscripts indicate the number of the cycle.

Back calculations for the period from the first quarter of 1958 to the
third quarter of 1960, made using formula (3.23), gave a relative standard
deviation of 17%, while calculations using formula (3.24) gave a relative
standard deviation of 16%. Since both analog cycles have approximately
the same relevant characteristics, we took the average of the two as
the forecast parameter, This was also reasonable because the 4th cycle
has an anomalously long descending part (in contrast to the 13th cycle), and
this could thus have caused the numbers predicted for the last years of the
current cycle to be too high. After the averaging, back calculations for the
period from the first quarter of 1958 to the third quarter of 1960 gave a
relative standard deviation of 15%,

It is clear from this example that the analog method makes it possible
to predict the quarterly Wolf numbers only for the descending part of the
cycle. Since the descending part differs essentially from the rising part,
therefore the accuracy of the forecast numbers should be improved as the
descending part of the cycle develops; this can be done using additional data
and modified regression equations.

If data for the descending part of the 19th cycle (for the third quarter of
1960) are introduced, then we obtain the following regression equations:

Wio=1.30W, 43, (3.25)
W =2.3TW,;—9. (3.26)

These equations do not differ much from equations (3.23) and (3.24), but
they are more reliable, since they reflect the tendency of the drop in solar
activity during the current cycle.

TABLE 11
Forecast of quarterly Wolf numbers for 1958 —1965 (according to Vitinskii)

Quarter 1958 1959 1960 1961 | 1962 | 1963 | 1964 | 1965
p | p—o p p—o p | p—o
1 | 204 | +18 | 168 | -14 | 157 | +a2 88 62 | 61 | 38 21
no{ s | 42 o | -1 faem | w1 86 87 | s2 | s8
m | e | <22 | 111 | -27 | 108 | -22 64 6o | 37 | 85
v | 190 | +16 | 162 | +a2 | 104 81 66 | 39 | 40

Table 11 gives the predicted quarterly Wolf numbers (the averages of the
values obtained using formulas (3.25) and (3.26)) for the period from the
fourth quarter of 1960 to the first quarter of 1965. The epoch of minimum for

" the 20th cycle is taken, according to Ol' (1960), as 1965.2. The table also
gives the quarterly relative spot numbers computed in the same way using
formulas (3.23) and (3.24), for the period from the first quarter of 1958 to
the third quarter of 1960 (columns p in the table), and also the deviations of
these from the observed Zurich quarterly numbers (columns (p-o0)).

It should be noted that the numbers given in the table for the years 1964
and 1965 are apparently too high, since even the descending part of the 13th
cycle is longer than the predicted descending part of the 19th cycle.
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Chapter IV

ULTRALONG-RANGE FORECASTS
OF SOLAR ACTIVITY

§ 1. General Remarks

As mentioned in the Introduction, the ultralong-range forecasting of
solar activity has had a great number of works devoted to it, many of these
involving very complicated mathematics, and yet it is likely that this sub-
ject has provided the highest number of failures and disappointments in
solar research. Many outstanding mathematicians (such as Schuster, Jewell,
and Slutskii) have examined the problems related to ultralong-range fore-
casts, but these problems are still far from being solved, even today.

The first basic studies of ultralong-range forecasts were made at the
end of the 19th century. However, the most intensive development of these
methods took place at the beginning of this century. From almost the very
beginning, two contradictory hypotheses were advanced, namely the super-
position hypothesis and the "'eruption' hypothesis. According to the super-
position hypothesis, which was suggested by Wolf in about 1889, the curve
of sunspot growth represents the result of a superposition of many periodic
processes. In principle, this may yield a curve of any desired complexity.
According to the ""eruption' hypothesis, first advanced by Halm (1901), each
11-year sunspot cycle is considered to be a more or less independent
eruption, and must be considered by itself.

We have already noted that the "eruption' hypothesis played a significant
role in the development of methods for forecasting solar activity within a
given 11-year cycle. However, when applied to ultralong-range forecasts,
this hypothesis has had a somewhat negative effect. The superposition
hypothesis, with all its defects, has served as a stimulus for the develop-
ment of methods of ultralong-range forecasts. Although at present this
hypothesis is of purely historical interest, still let us open by discussing
some methods which are based on it. The most reasonable methods, those
which were developed later, will be stressed here,

In this chapter some methods based on the properties of the 80-year to
90-year cycle and the 22-year cycle will also be discussed. These methods
give the highest predictability. Schove's method, which is based on very
extensive actual data, is especially interesting.

Finally, we will also consider methods for the ultralong-range forecast-
ing of spot-group areas. Although these methods are essentially semi-
qualitative, they are nevertheless significant, since they represent a first
attempt toward forecasting still another solar-activity index.

Forecasting the main characteristics of the next (the 20th) sunspot
cycle is also a very interesting problem. The basic studies of this subject
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have therefore been collected to form a special chapter, the content of
which is closely related to that of the present chapter.

§ 2. The Superposition Method

The superposition method is based on the superposition hypothesis, which
was stated in the preceding section. Since this hypothesis maintains that the
shape of the sunspot curve is determined not by one but by several periods,
therefore the main efforts of various researchers were directed toward dis-
covering all the possible periods which would give the best fit for the actual
curve shape.

Wolf (according to Kimura, 1913) found, in addition to the period of 11.33
years, periods of 10, 8, 33, and 81 years. Thiele (1859) discovered, be-
side the main period, three additional periods, 9.805, 5.8950, and 3.76 years
in duration. Finally, Schuster made an important contribution toward defin-
ing the main periods of solar activity. Using the method of periodogram
analysis which he developed, Schuster (1906) isolated a total of six periods,
including one 11.125 years in duration. It should be noted, however, that
he did not obtain a satisfactory fit for the Wolf-number curve,

The first attempt toward an ultralong-range forecast of the Wolf numbers
was that of Kimura (1913). He used the yearly Wolf numbers for the years
1750 to 1911 in order to obtain 29 sinusoidal terms, which give a general
representation of the relative spot numbers in the form

W =X a,sin (p.t + 4,), (4.1)

where n=1,. .., 29, 4, is the amplitude, and A, is the phase in the epoch of
1835.5. Although most of these periods can hardly be considered to exist,
still Kimura's series gave a quite good fit for the curve of the relative spot
numbers. For the years 1750 to 1800 the mean error in the curve fit was
+10 (with a maximum of 28), and for the years 1800 to 1916 it was +6 (with
a maximum of 13.6). It should be noted that one of the periods found by
Kimura was 82.2 years.

Kimura predicted the yearly Wolf numbers for the years 1913 to 1950,
His forecast for the 15th cycle was rather unsatisfactory {maximum Wolf
number of 60 and epoch of maximum 1914, as compared with the actual
values of 104 and 1917), but his predictions for the 16th and 17th cycles
were acceptable:

l6thcycle. . . . . . . . .Wy =85(78); epoch of maximum 1927.5(1928)
1Ttheycle . . . . . . . . .WM=125(114); epoch of maximum 1937 (1937)

The accuracy of Kimura's forecast for the 17th cycle is actually no lower
than that of Waldmeier's forecast (Wu= 124 and epoch of maximum 1937.7).
The difference between the two, however, is that Kimura made his forecast
in 1913, while Waldmeier made his much later, in 1935. Figure 12 shows
Kimura's results. The solid curve indicates the observed Wolf numbers
and the dashed curve gives the numbers computed by Kimura.

It is not neccessary to list here the many works dealing with superposi-
tion methods, since they only differ from one another with respect to the
mathematical apparatus used (periodogram analysis, harmonic analysis,
Fourier functions, etc.). It is sufficient just to mention that the main
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studies were those of Turner (1913a), Michelson (1913), Alter (1928),
Oppenheim (1928), Stumpff (1930), Clayton (1939), and Anderson (1939).
Most of these studies were definitely unsuccessful. A good illustration

of this i8 Anderson's forecast, which presupposes the existence of a 312~
year period. According to this forecast, the epoch of maximum for the

18th cycle falls in 1951 (actually it was 1947) and that of the 19th cycle

falls in 1961 (actually it was 1957); the corresponding predicted maximum
Wolf numbers are 75 (instead of 151) and 103 (instead of 190). The main
reason for the failure of the superposition methods is their excessive formal-
ity. Too much attention was given to short periods (shorter than 11 years),
while the significance of long periods for ultralong-range forecasts was defi-
nitely underrated. The most erroneous results were obtained when the
Wolf-number curve was expanded into a Fourier series; on the other hand,
periodogram analysis and the construction of a resultant curve using all

the periods obtained may give results which are not bad, as is evident from
Kimura's studies.

Consequently, the superposition method cannot give satisfactory fore-
casts of the Wolf numbers for subsequent cycles. Its real significance was
just to draw attention to the study of long-period sunspot cycles and to stress
the importance of ultralong-range forecasts of Wolf numbers.

§ 3. Gleissberg's Method

Just as Waldmeier was the first to give a successful forecast of the rel-
ative spot numbers for the current cycle, so Gleissberg occupies this same
position among those who developed methods of ultralong-range forecasting.
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Gleissberg's method presupposes the existence of an 80-year to 90-year
cycle of sunspots, the main features of which were discussed in Chapter I,
§ 8. Contrary to Waldmeier, however, Gleissberg maintained that successive
cycles are not entirely independent, and that it is thus possible to forecast
the next successive cycle and possibly later cycles as well.

Since it is very difficult to determine the epoch of beginning and the epoch
of end of an 11-year cycle (Waldmeier, 1939), Gleissberg especially concen-

trated on the epochs when the Wolf number is equal to ;Wu. Let us now
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introduce the following characteristics of the 11-year cycle (they are all
shown in Figure 13):
Wy, the maximum Zurich smoothed monthly relative spot number;
¢, the reduced length of the rising part of the cycle, defined as the
time during which the smoothed monthly Wolf number increases from TW,,

to W (in months);

t;, the reduced length of the descending part of the cycle, defined as
the time during which the smoothed monthly Wolf number decreases

from Wx to %WM (in months);

t;, the period of low activity, defined as the time interval between the
end of the reduced descending part of one cycle and the beginning of the
reduced rising part of the next cycle (in months),

Next, on the basis of the Zurich data, let us obtain the values of these
parameters (see Chapter II, Table 9). From the latter, the values of W%,
t®, ¢ and t{ may be computed, namely the averages of four successive
values of Wy, ¢, t, and {;, respectively. These numbers reflect quite
clearly the variations in time of the main characteristics of the 11-year
solar cycles. Although these variations are not particularly regular, and
thus cannot be represented by exact mathematical formulas, they are never-
theless useful in ultralong-range forecasting. Consequently, ultralong-
range prediction must be considered to be a probability problem.

If we use the data in Table 9 to calculate the quantities

A=t®10.2WH,
B =t®—0.469, (4.2)
C =t 0.8,

then we see that these quantities do not oscillate regularly and have a random
distribution about their average values A=55.4, B=16.4, and  =77.4.
Gleissberg assumed that these values vary only slightly when the following
11-year cycles are considered, and so for his subsequent computations he
rounded these averages off to 55.5, 16.5, and 77.5. The distribution of dif-
ferences between the actual values of 4, B, and C and their average values
is very close to Gaussian, with a mean error of §=+1.95. Thus, k=

1
———t'v—é:— 0.36-

Therefore, the probability that the values of 4, B, and C will differ from
the average by no more than § may be expressed as erf (0,.363), where we de-
fine [the error function]

z
erf (z)= % Ie""dy. (4.3)
]

Accordingly, Gleissberg (1952) derived the following probability laws:

1. the probability that t#4-0.2W for any two successive cycles lies
between 55.5~—38 and 55.5+ 8§ may be expressed as erf (0.363);

II. the probability that ) —0.4¢{¥for these same cycles lies between

16.5 -8 and 16.5+ 3 may be expressed as erf (0.363);
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III. the probability that #)-}- 0.8¢t% for these cycles lies between 77.5—3
and 77.543% may be expressed as érf (0.363).

Since none of these probability laws establishes a correlation between
different sets of cycles, they cannot be used to predict future cycles; to
do this, an additional law is required. Also, since the quantity tg) enters
into all three laws, it was convenient to investigate the variation of this
quantity from one cycle to the next. If this variation obeys the law of random
error, then the probability that the variation amplitude is not greater than 3
may be expressed as erf (0.168).

It will be useful to know what the probability is that i® will change by an
amount 8. This probability can be obtained by subtracting the probability
that ¢ will change by no more than 3-0.5 from the probability that it will
change by no more than $+0.5. Thus, the fourth probability law states that:

IV. the probability P (3)that t® will change by an amount ¥ is

P (%) = erf (0.163 - 0.08) — erf (0.165 — 0.08). (4.4)

Table 12 lists some values of P(8) and Q). The meaning of the function
Q () will be explained below.

TABLE 12
Functions P (3)and Q (3)(according to Gleissberg)
U P ©®) Q& s P® Q® U P@®) Q@
0 0.09 0.50 5 0.10 0.99 10 0.01 1.00
1 0.18 0.69 6 0,07 1.00 11 0.01 1.00
2 0.16 0.85 1 0.05 1,00 12 0,01 1.00
3 0.14 0.94 8 0.04 1.00 213 0.00 1.00
4 0.12 0.98 9 0.02 1.00

Gleissbergused these four probability laws to predict the 18thcycle, Since,
according to Table 9, the next value of W will be greater than 91.7 (it is
approximately 110), therefore the value of Wx for the 18th cycle will be
greater than 145, Since the sum of the last three quantities in the second
column of Table 9 is 302,7, the sum of the four numbers Wy for cycles 15
through 18 will be greater than 447.7. Consequently, W (for cycles 15
through 18) should be greater than 111.9, that is, for these cycles we will
have #9402WP3 t¥.1.225, On the other hand, it follows from the eighth
column of Table 9 that the next value of tﬁ.‘)will not exceed 33. Thus, Wy of
the next cycle will be greater than 145 if the following conditions are met:

lﬁ" =33 and t® 4 0.2W%9 > 555,
t9=232 and 4 0.2W¥ >54.5, (%)
#=31 and 4 0.2WP>53.5, etc.
The probability that # will change by an amount § was denoted as P (8).
Since the last value of twas 33 and since ts_‘) now decreases, P(3) represents
the probability that the next value of ¥ will be 33 —3.

Let us now consider the probability that #94-0.2W{® will be greater than
55.5-8. This probability is the sum of the probabilities that 94 0.2W¢ will
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lie between 55.5-8 and 55.5 or between 55,5 and co. The first probability,
according to law I, may be represented as Y, erf (0.363), while the second
probability is 1f,. Therefore, the probability that i® 4 0.2W¥will be greater
than 55.5-§ is given by the function

Q@)= er1(0.36%) + 7, (4.4a)

some values of which are listed in Table 12.
Let us now calculate the probability that one of the conditions (*) will be

0
met. This probability is given by the expression Y P(3)Q®), and if we take
=0

the values of P (8) and Q(8) from Table 12 we find that the probability that Wy
for the 18th cycle will exceed 145 is 86%. For such a high Wy, it can be
expected that the reduced time {, of the rising part of the 18th cycle will be
very short. The average of all the ¢, for cycles 1 through 17 is 35 months.
The sum ¢, (15)4-¢,(16)4-¢,(17)=98. If we assume that for the 18th cycle
t, <32, then ¢ (15)+-¢,(16)+¢,(17)4¢,(18) <130 and consequently #<32.

As shown previously, the probability that the next t®) will be equal to
33-3is P(8). Accordingly, the probability that t® will not be greater than

o
32 is 3, P(3), and this sum is obviously equal to 1 — P(0). Thus, from
=

Table 12 we find that the probability that in the 18th cycle ¢, <32 months is
91%.

The period of low activity ¢, of the preceding cycle is less than 40 months.
Also, the sum &, (15)-4¢,(16)+¢;(17)=136, so that taking into account our as-
sumption that £(15)4¢,(16)+ # (17)+ £, (18) {176 (that is, that the next value
of ¥ 44} we will obtain

t) —0.460 > 10 — 175,

By reasoning which is analogous to that for Wy, we find the probability
that the next value of #; will be less than 40, The latter is given by the sum

[--
> P@)Q(@+1). Table 12 may now be used to obtain a probability of 93 %
i=e

that the period of quiet activity will be less than 40 months.
Let us now compare the predicted and observed values of the main char-
acteristics of the 18th cycle:

Predicted Observed
WM e e e e e e e e e 145 152
Epoch of maximum . . . . . . 1948.3 19417.5
. o e 32 21
7 SV 40 37

The predicted maximum Wolf number shows a very good agreement with
the observed value. However, the values obtained for the basic time char-
acteristics of the cycle (especially for ¢, ) cannot, as will be shown in the
following, be considered very successful.

On the other hand, it is for just these most unreliable predictions that
Gleissberg claimed the highest probability of forecasting reliability. Thus,
it may be concluded that the probability of reliability of the various sunspot-
cycle parameters claimed by Gleissberg is, to a large extent, unjustified.
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Sometimes the evaluation may even lead to a deceptive picture of the re-
liability of the forecast. . The main feature of Gleissberg's method is its use
of the properties of the 80-year to 90-year cycle. However, this method
bases itself on the 80-year to 90-year cycle of the parameter {4 and the
variation of this parameter is not regular enough to permit a reliable extra-
polation to the next cycle.

Subsequently, Gleissberg (1951b) modified his method somewhat, although
the modification, as will be shown below, was not a fundamental one. Let
us briefly outline this modification here, without entering into the probability
theory involved (since the latter theory is not pertinent to the discussion),
using the 19th cycle as an example. In addition to the previously used cycle
characteristics, Gleissberg also introduces the minimum Wolf number W,
and its average over four successive cycles WW. This quantity may be cor-
related with ¥ using the expression

& 4+ 1.42WW =41.85, (4.5)
He next defines the parameter
a==0.375¢, -+ 0.00522, (4.8)

Then, by extrapolating the t¥ curve, Gleissberg takes the extrapolated
value of ¥ as 30 and uses the third formula of (4.2) to find that for the 18th
cycle ¢#(18)=59.. Thus, since t,(45)+¢,(16) 4 ¢,(17)=149, we have t,(18) =
= 87. éince Wx(18) occurred in May 1947, therefore t,(18) should end in
August 1954. Then since we took tW(19)=30, we find from the second
formula that ##(19)=34. Also, #;(16)-}¢,(17) ¢ (18)=121, so that¢,(19)=15
and finally from (4.6) we have a(19)=7; thus the minimum should occur in
March 1955,

If we take t®(19)=30, then from ¢,(16)J-¢,(17)}-¢,(18)=87 we have
t,(19)=233. Then t,(18)4¢(19)4 ¢, (19)=135, and thus the maximum of the
19th cycle should be expected in August 1958, It follows from formula (4.5)
that W®(19)=28.3. Since we know that W_(168)+ W _(17) - W, (18)=16.7, we
find that W_,(19)=16.5. Finally, from the first formula of (4.2), we find that
WO (19)=127.5, and since Wax(16)} Wi (17)} Wx(18)=349.1 we have
W (19) =160.

Gleissberg's method also gives t,(19). From the third formula of (4.2),
we find that t#(19)=59.3. Since t,(16)-¢,(17)4-¢,(18)=161, we have

t,(19)=16, so that%W, should be expected in January 1965,

There are now enough data available to evaluate the accuracy of Gleiss-
berg's forecast for the 19th cycle. It should be mentioned that a more re-
fined forecast for this cycle, made later by Gleissberg (1953) using a dif-

- ferent method, is much inferior to the one just described. For example,
according to this later forecast, Wx(19)=130. It should also be kept in
mind that Gleissberg used smoothed monthly Wolf numbers and the epochs
of extrema corresponding to these.

The following data provide a comparison between the predicted and ob-
served characteristics for the 19th cycle:

Predicted Observed
Epoch of minimum . ., . . 1955.2 1954.5
Wa o - - e 16.5 3.6
Epoch of maximum . . . . 1958.7 19581
| 160 202
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The epochs of exirema were predicted with satisfactory accuracy, but the
forecast cycle height was much too low.

Finally, let us consider the errors involved in forecasting for 11-year
cycles. Since the variation of ®is not actually regular, and since it is
just this parameter upon which the entire forecast is based, therefore very
small errors in #9 will lead to quite large errors in the other predicted
parameters. An error of £1 in tﬁ," results in the following errors:

t,— +4, Wa— +20, t;— +10, t,— +5, a — +4, W,— +3.

One other important shortcoming of Gleissberg's method and of its modi-
fication is that it takes virtually no account of the properties of the 22-year
cycle and of the supersecular variation of solar activity. This method thus
lacks internal control and is practically quite one-sided. As indicated previ-
ously, the probability evaluations of this method are very deceptive, and thus
cannot replace internal control. Nevertheless, Gleissberg's method can
still be used successfully in combination with other methods, and it has not
lost its practical significance.

§ 4. The Method of Ol'

In 19489 Ol' developed a method for ultralong-range forecasting which is
based on the assumption that the main periodicities governing the develop-
ment of solar activity are the 11-year cycle, the 22-year cycle, the 80-year
to 90-year cycle, and the supersecular variation (O1', 1949a, 1949). Let
us now consider this method as it applies to the 19th cycle.

The method of Ol' uses the following parameters of the 11-year cycle:

Wy, the maximum yearly Wolf number;

EW, the sum of the yearly Wolf numbers for the cycle;

ZJW, the sum of the yearly Wolf numbers for the rising part;

ZW' the sum of the yearly Wolf numbers for the descending part;

¢, the length of the rising part (in years);
<, the length of the descending part (in years);
T, the duration of the cycle (in years).
The superscript #ywill indicate the smoothing of a parameter over four cycles.

The point of departure for this method is the Wi curve shown in Figure
14. An extrapolation of this curve, taking into account the supersecular
variation (the dashed lines in Figure 14), gives a value of Wl})=127 for
1943. Thus, since Wx(16) + Wx(17) - Wa(18)=2344, we have Wy(19)==184.

Now let us turn to the other parameters of the 11-year cycle. The
quantities ZW and Wy are related by the formula

W = —103 -} 8.60W ,— 0.0236W'k. (4.7)

Since we know that Wx(18)=152, we can use formula (4.7) to find Y W (18)=
=660. Then, since Y W(18) = 279, we have W (18)=1381.
In order to obtain the total duration T,s of the cycle, let us introduce the

Zwe.

formula for the linear regression between W% and 7

)
2 ;V( = 0.455W® +1.7. (4.8)
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Thus, since t,;==3.1, we have Tp=Tw—1t;;=6.4.
The value of T3 canbe found by other methods.The linear regressionbetween

3w . >w
For W% =112, we obtain =52.6, that is 5 u= 69.4 and T,,= 9.5.

W
S W®Hand -2:— may be expressed by the formula

)
E_:W(.-_- 0.0737 S W®1-3.0. (4.9)
E’Wu)
For cycles 15 through 18, X W® =531, so that = — =42.0. Thus, we

w
obtain(}:: ) = 52.1 and 7= "7.3.
18

As noted in Chapter I, Waldmeier gave a formula for the regression

between Q=1‘- and Wy For even cycles this is
15.64 —5.81 log Wy
0= 3.0+ 0.03W
Thus, forWx=152, we obtain ¢=0.39, that is, %,=7.9.
Let us take the average of these values for <, namely 1= 7.2. The total
duration of the 18th cycle is then

T=314172=103,

that is, this cycle should end in the middle of 1954. It turned out that this
forecast of the epoch of minimum for the 19th cycle was excellent.

Let us now consider the direct prediction of the basic parameters of the
19th cycle. Previously we obtained W,(19)= 164, and from regression
equation (4.7) we obtain XW (19)= 670. The following equation for the re-
gression between ZW for anevencycle and the following odd cycle (Gnevyshev
and Ol', 1948) may now be used:

(1.7

Zwodd =0.844 2Weven+152. (4.10)
For %W (18)= 660, we find that (19)=709. The average of the different
values obtained for 2,W (19) is (19)= 690.

Wolf number

M0 20 W 60 G0 1800 20 40 60 80 %00 0 4 60 Years

FIGURE 14
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The quantity ZZW(ig) is found using the parabolic regression formula

SLW =134 0.21 W 4-0.000536 (ZW)"- (4.11)

For XW (19)= 690, we obtain W (19)=413. The following formula for the
regression between Z,W“’ and EW“’can also be used:

> =0.707 IW* — 96. (4.12)
Since for cycles 16 through 19 2W“’= 592, therefore we have EW“)= 322
and W (19)= 358. The average value is XW(19)= 385, so that we obtain
W (19)= 305.

The duration of the 19th c;ycle can be determined using formula (4.8).

wit W
For W¥%= 127, we have ZT = 59.5, that is (ZT—)m =72.6 and T=9.5. In

w w
addition, formula (4.9) gives 2&7 = 46.6, that is, (E’—t) =56.0 and
—t /y

Ts=6.9. Consequently, £,=2.6 and Q= 0.38, which is close to the values
obtained using Waldmeier's equation (1.8) for odd cycles.
Thus, Ol' predicted the following values for the basic parameters of
the 19th solar cycle:
W,=164 W =8690; W =305 X,W =385 t=2.;
+=6.9; T=9.5.
Later, after taking into account more of the descending part of the cycle,
O1' (1954) obtained the following improved forecast for the 19th cycle:

W,=164 IW=730; W =278 D,W=472; t=24;
t=7.2; T=9.6.
There are not enough data as yet for an evaluation of all these forecasts.
However, it is interesting to compare the forecast and observed values of
the quantities known so far:

WM:' 190; 21W= 374; t=3.4.

The first forecast was somewhat more successful, the highest deviation
being observed for the length of the rising part of the cycle. Interestingly
enough, when the descending part was taken into account, the forecast was
not improved using this method (as was also the case in the preceding sec-
tion, using Gleissberg's method). This stresses once again the fact,
pointed out in Chapter I, that for an l1-year cycle the length of the rising
part of the cycle is of decisive significance.

Finally, let us discuss the statistical justification of the regularities
made use of in the method of Ol'. If we assume that in this case we have
only small samples, then the significance of the correlation coefficients
can be evaluated by means of Romanovskii's criterion (1947):

|rjyn—12>3. (4.13)

O1' obtained the following correlation coefficients:

4
r [EW(;)! Z—:i] =0-983v

4) =19
r[ ® 2‘;'( ]:0.983. "

r[wh, 2w"]=0.983,
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t
)

r [z“’odd N ZMVCHJ = 0-950 n= 10.

It is evident that the first three coefficients definitely satisfy Romanovskii's
condition and are thus significant. However, due to the smallness of n (n=10),
the validity of the last coefficient cannot be inferred using Romanovskii's
condition, )

The method of O1' is superior to Gleissberg's method, first, by virtue
of its relative simplicity and, second, because of its internal control. The
latter factor is particularly important, since it increases considerably the
reliability of the forecast.

§ 5. Methods Related to the Properties
of the 22-Year Cycles

Kopecky (1950b) proposed two methods, both related to the properties
of the 22-year cycles, for the ultralong-range forecasting of Wolf numbers.
The first of these methods is associated with a property of the 22-year
cycles which was established by Gnevyshev and O1' (1948), namely that
there exists a close correlation between the characteristics of the odd and
even 11-year cycles constituting a 22-year cycle (see Chapter I, §7).

For the years with the best correlations between the Wolf numbers for
the even and odd cycles, Kopecky (1950a) calculated the following coeffici-
ents for conversion from the relative spot numbers for even cycles to those
for odd cycles: 2—1.,10, 3—1.30, 4—1.30, 5—1.20, where the numbers
preceding the dashes represent the number of the year in the 11-year cycle,
measured from the epoch of minimum. Accordingly, the correlation coef-
ficients are: for year 2, +0.521+0,186; for year 3, +0.686+0.135; for
year 4, +0.971+0,014; and for year 5, +0788+0.097, Kopecky (1950b)
used these correlations to obtain the following yearly Wolf numbers for the 19th
cycle: for year 2, 123.6; for year 3, 208.5; and for year 4, 165.3. If we
take into account that the epoch of minimum of the 19th cycle occurred in
1954, then the 2nd year of the cycle was 1956. And so this forecast was
quite successful. The height of the maximum of the 19th cycle was de-
termined with an error of only 10%.

Let us now try to determine these numbers using the conversion coef-
ficients, in which case we obtain: for year 2, 102; for year 3, 197; and for
year 4, 167. Thus this method, which appears at first glance to be so
primitive, gives a much improved accuracy, a value of Wy= 197 in com-
parison with the observed 190,

The second method proposed by Kopecky is based on the 80-year to
90-year variation in the principal characteristics of the 22-year cycles.
Let us introduce the following parameters describing a 22-year solar cycle:
IWy, the sum of the maximum Wolf numbers of the Hale pair of 11-year
cycles; and TW,, the sum of the yearly relative spot numbers for the 22-
year cycle. These sums are given in Table 13,

The table shows that two maxima of EWJ' and EW“ occur in cycles 1 and 4,
indicating a quite distinct 80-year to 90-year cycle in these parameters as
well. Therefore a third maximum may be expected in the 9th 22-year cycle.
If we assume that the values of EWM and ZW¢ in the 9th cycle will be equal
to their averages in the 1st and 4th Hale cycles, then we can estimate the
height W, (19)of the 19th cycle. Observations give W, (18)= 151.6 and
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Table 13 gives sz= 261.5, so that we obtain W,(19)=110. Analogously,

19
observations give 2W,(18)=702 and Table 13 gives 3W,=1267, so that
1

W, (19) = 565.

There is a fairly close correlation between EW. and W,, as determined
by the regression equation

SW, = 4.65W,,+ 62.5. (4.14)

This relation gives W, (19) =108. Obviously, Kopeckj's forecast according
to the second method is rather unsuccessful. This may be due to the fact
that this method does not take into consideration the supersecular variation
of solar activity, which affects Z'W, and ZWO to some extent, as Table 13
shows. Moreover, the cyclic oscillations of ZW' and ZW. over many years
are less regular than the variation in W(;{)-

TABLE 13

Parameters of 22-year solar cycles (according to Kopecky)

Number of Number of
Hale cycle TWx IWa Hale cycle P Wa E W
—2 100.9 476.7 4 262.6 1364.1
—1 175.0 898.3 5 234.8 1178.4
0 179,3 903.3 8 148.6 854.6
1 260,5 1170.4 1 167.4 822.4
2 179.7 1137.3 8 192.2 10117.2
3 116.8 632.6

Chvojkova (1952) plotted two curves showing these variations over many
years, for the even and odd 11-year cycles separately. These curves show
different cyclic oscillations: the odd-cycle curve attains a maximum once
every 80 years, while the even-cycle curve attains one every 55 years.
When the two curves are in phase, they have high maxima and deep minima,
whereas otherwise the maxima are lower and the minima are shallower.
The curves come in phase once every 176 years. Analogous variations
were observed by Chvojkova for 2T (the durationofthe 22-year cycle), T, §,

and ;‘- By extrapolating these cyclic variationsto 1857, Chvojkova obtained

the following values of Wy for the 19th through 22ndcycles: 100for cycle 19;
30 for cycle 20; 50 for cycle 21; and 120 for cycle 22. Chvojkova's fore-
cast for the height of the 19th cycle is obviously unsuccessful, and it is
quite possible that this is the case for all the other cycles computed by her.
As O1' (1954) has indicated, this is to a considerable extent due to the fact
that the cyclic variations observed by Chvojkova are much more compli-
cated, and at the same time much less reliable, than the cyclic variation
of W:l over many years which was established by Gleissberg.

§ 6. Eigenson's Method

Eigenson (1955) has proposed a forecasting method based on the proper-
ties of Spérer's law. Eigenson and Mandrykina (1954) have shown that there
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exists a correlation between the average latitude $a..0f the sunspot zone in
the epoch of minimum, and the maximum Wolf number W. for the given
cycle. If the 1887 —1876 cycle is omitted, then the Greenwich data for the
sunspot latitudes and the Zurich relative spot numbers give a correlation
coefficient T wn™ +0.73+0.12.

The first spots of a new 11l-year cycle appear a year or a year and a
half prior to the beginning of this cycle as defined by the Schwabe-Wolf
law. Therefore, it is possible to predict the height of the next cycle a
year or a year and a half before its epoch of minimum. In order to do
this, the following regression equation can be used:

W, =6.4,, — 80.17. (4.15)

In 1955 Eigenson used this method to forecast the height of the 19th solar
cycle. He used the anomalously high latitude of the first high-latitude one-
day group observed at the Mount Wilson Observatory by Babcock on 13 August
1853 (that is, more than a half-year before the epoch of minimum of the 19th
cycle). This group was observed simultaneously at the McMath-Hulbert
Observatory, and its latitude was + 52°,

If the first spot group can be used as a basis for certain, however tenta-
tive, conclusions concerning §,, and if a correlation coefficient of r=+0.73
can be considered high enough for forecasting, then it follows from the fore-
going that the 19th solar cycle should be much higher than the 18th. Eigenson
used equation (4.15) to obtain a rough estimate of the height of the 19th cycle,
namely Wy S200. This estimate turned out to be very close to the actually
observed maximum Wolf number, the difference being only about 5%. How-
ever, this success should be attributed to the extreme care taken by the
author in the analysis of his data and to his ability to guess a reasonable
lower limit for the figures which he obtained.

Eigenson's method should really be classified as a qualitative method,
and in this respect it can only be used in conjunction with methods of ultra-
long-range forecasting which give quantitative estimates. The main dis-
advantage of this method is the obvious arbitrariness of the assumption
that the latitude of the first spot group reflects to some extent the average
latitude of the spot groups during the epoch of minimum. Moreover, the
regression used is very sensitive to changes in ¢, so that a relatively small
change in this latitude can cause a considerable variation in the estimate for
the maximum Wolf number, For example, if in the epoch preceding the
minimum the latitude § of the high-latitude spot groups is 40°, a value which
is clearly exaggerated, then we have Wy= 176,

§ 7. Schove's Method

The method of ultralong-range Wolf-number forecasting suggested by
Schove (1955) is somewhat unique. This method is based on the construc-
tion of a series of maximum Wolf numbers, expressed in arbitrary units,
and a series of epochs of extrema for the 11-year solar cycles, both series
extending from 200 B.C. until 1954. The necessary data were obtained
from the available records of sunspots and polar auroras. Fritz has con-
structed a similar series using the data on hailstorms and high-yield crop
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years as cycle indicators, but Schove considers the use of such data un-
justified. Moreover, he claims that the phase of the polar-aurora cycle
lags behind the sunspot cycle somewhat.

Schove bases the compilation of his basic table on two fundamental as-
sumptions:

1) the time between successive maxima is not less than 8 and not more
than 16 years;

2) 9 sunspot maxima occur every 100 years.

That this is true has been reliably established for the period from 1515
A.D. until the present. The most reliable data for the extrema of the 11-
year solar cycles are those collected after 1749. These data were classi-
fied into 30-year groups of longer ll-year cycles (such as those with mid-
points in 1650/1655, 1720, 1805/1810, and 1885/1890) and intermediate
groups of shorter cycles (such as those with midpoints in 1685, 1760/1765,
1845, and 1935). The average length of seven cycles, at least over the
last two and a half centuries, is between 10 and 12 years. The phase of
an individual 11-year cycle can easily be determined from the residues
which are obtained from the epochs of minimum for the period since 1700,
using multiples of 11. During the last three centuries a residue of 5 was
typical. The phase of a maximum near the transition from one century to
the next, however, is ambiguous.

The main results of Schove's studies are given in Table 14, in which the
cycles are listed as decimal fractions. In this century the end years of the

solar cycles approximate the following pattern: 00, .11, .22, .33, ..., .88,
.99/00 and so they are denoted correspondingly as .0, .1, .2, .3, ..., .8,
.0. The intermediate minima are denoted by the decimal fractions .05, .15,
.25, ..., .85, .05. In earlier centuries the maxima followed the rule of

11-year periods. Data which cannot be considered reliable are placed in
parentheses. When the epoch of minimum was uncertain, the probable
error was taken as 4. A probable error of 3 corresponds to cases of am-
biguous interpretation.

In order to avoid negative values, the residues in the table were expres-
sed as follows: up to 800 A, D. they ranged from 5 to 15 (instead of from
~6 to +4), while after 800 A.D. they ranged from 1 to 13. The intensity of
the 11-year cycles was evaluated on the basis of historical sources; an
arbitrary qualitative scale was used, with a number of gradations sufficient
to characterize the cycle precisely. The intensity symbols have the follow-
ing meanings:

Annual Wolf

number

$SS = exceptionally strong . . . . . . . >180,
S§ = very strong (150, 140, 140) . . . . . 145,

§ = suong (110, 130, 120, 110) . . . . . 120,

M S = moderately strong (100, 100). . . . . 100,
M = moderate (90, 90, 80) . . . . . . 85,

W M = moderately weak (70). . . . . . . 70,
W =weak(60,60) . . . . . . . . . 60,
WW = very weak (50, 50) Ce e e e e 50,
WWW = exceptionally weak . . . . . . . 45,

X = unknown

Here the figures in parentheses correspond to the maximum Wolf numbers
for the 11-year cycles since 1750,
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TABLE 14

Basic characteristics of solar periodicity for the period from 648 B. C, to 2025 A, D, (according to Schove)

Years | Years
Esti-
Numbef Year‘of Prob- 3 mated | Maximum aft'er aftfar Ye.ar.ofR e
of maxi-| maxi- able |Residud] Wolf | intensity prevu.)uspre‘vn‘ous mini- |Residu
mum mum error umben maxi- | mini- { mum
mum | mum
1 2 3 4 5 6 7 8 ] 10

—6.45 —648 3 8 (S)y? e e oo oo [(—653)) 3
—5.25 —522 3 12 (S)? .. 5 (—527)} 7
—5.15 | (—512) 4 11 . .. 10 4 (—516)f 7
—5.05 —501 2 11 (S)? (11) 4 (—505)f 7
—4.85 | (—491) 4 9 wW-M (10} 5 (—496)| 4
—4.75 —481 2 8 S 10 5 —486 3
—4.65 —4N 2 7 S 10 3 —474 4
—4.55 —461 2 6 S 10 4 —465 2
—3.85 —393 3 7 N . .. 6 —397 3
—3.75 N Y e e ofe . . | —386 3
—3.45 —349 3 7 S S 5 —354 2
—3.35 —340 3 L) S 9 4 —ggg ;
—3.25 R N
—2.85 | (—293) 4 9 ..o e .. (2981 2
—2.75 | (—283) 4 8 R .. |(—288)
—2.65 —272 3 6 X N )] --277 1
—2.55 | (—261) 4 6 .« .. ce e e oo} —266 i
—2.45 | (—249) 4 7 [ e o o ]e .. J(—254)] 2
—2.35 —236 3 9 X .. 6 —243 3
—2.25 —223 3 11 X 13 g —-538 2
—2.15 —214 2 9 S —2]
—2.05 —205 2 7 S 9 5 -—210 2
—1.85 —192 2 2 S 13 7 —199 2£i
—1.75 —182 3 7 wM 10 5 —187
—1.65 —172 3 6 Wéﬁ! 18 2 ——1(73_7] (l)
—1.55 —163 3 4 —1

—1.43 | (—149) 4 (7) w (14) ©)  |[(—154)| 2
—135 —135 3 10 M (14) 6 - 141 4
—1.25 —125 3 9 MS 10 4 —129 5
—1.15 —113 2 10 S 12 6 —119 4
—1.05 —104 2 8 Ss lg g —182 2
—0.85 — 91 2 9 S —

—-0.75 | (— 82) 4 1 M (9) 4 (— 86y 3
—0.65 | (— 72) 3 6 WM (10) 5 (— 1| 1
—0.55 — 62 2 5 SS 10 7 — 69 [—2
-0.45 — 63 2 3 SS 9 5 — 58 | =2
—0.35 — 42 3 3 MS 11 4 — 46 | —1
—025 | — 27 2 7 S 15 5 |(— 32| 2
—0.15 — 16 3 7 wM 1 5 — 21 2
—0.05 | (— 5) 4 7 WM (1) 6) — 11 1
+0.05 8 4 (8) W or ’1 13 5 3| 3
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TABLE 14 (continued)

1 2 3 I 5 [ 7 8 9 10
0.15 20 3 9 S 12 5 15 4
0.25 31 4 ) wor M| (11) | ©) 26 4
0.35 42 3 9 W or M| (11) 5 37 4
0.45 53 3 9 S 11 6 47 3
0.55 65 3 10 N 12 5 60 5
0.65 (76) 4 (10) w or M| (11) 6 (70) 4
0.75 (86) 4 (9) W or M| (10) 6 (80) 3
0.85 (96) 4 8) W or M| (10) 5 91) 3
1.05 105 3 5 M OorS§ 9 4 101 1
1.45 (118) 4 7 wor M 43) | 6 112 1
1.25 (130) 4 8 wor Ml (12| 6 @24 { 2
1.35 (141) 4 8 W or M| (11) 6 (135) 2
1.45 (152) 4 8 wor Ml (1) | 6 146) | 2
1.55 (163) 4 8 Wwor M| (11) | 8 (157) | 2
1.65 175 3 9 Mor §1 (12) 5 170 4
1.75 186 3 9 S 11 4 182 5
1.85 196 3 8 S 10 4 192 4
2.05 (208) 4 8 X a2l s 203 3
2.15 219) 4 8 X an | 5 (214) | 3
225 (230) 4 8 X anl 5 | (@25) | 3
235 (240) 4 7 X (10 5 (235) 2
2.45 (252) 4 8 X 12| 5 | @40} 3
2.55 (265) 4 10 X HE R (260) { 5
2.65 277) 4 11 X 2| 5 | @2 | 6
2.75 290 3 13 Mor s| 13 6 (284) 7
2.85 302 1 14/13 SS 12 6 296 8
3.05 311 1 1 M 9 4 307 ki
3.15 321 1 10 M 10 4 317 6
3.25 330 3 8 w 9 4 326 4
3.35 342 2 9 w 12 6 336 3
3.45 354 2 10 S 12 6 348 4
3.55 362 3 7 S 8 4 358 3
3.65 372 1 6 sS 10 4 368 2
3.75 387 3 10 M 15 7 380 3
3.85 396 3 8 M 9 5 391 3
4.05 410 4 10 w 14 6 404 4
4.15 (421) 4 (10 w 11 5 416 5
4.25 430 i 8 M orsS 9 4 426 4
4.35 441 i 8 MorS| 1 4 437 4
4.45 452 2 8 S 1" 4 448 4
4.55 (465) 4 (10) w (13) 6 459 4
465 479 1 13 Mor S| (14 | 17 472 6
475 490 i 13 M 11 6 484 7
4.85 501 1 13/12 SS 11 6 495 7
5.05 511 i 11 S 10 4 507 7
5.15 522 2 11 wWor M| 11 5 517 6
5.25 531 1 9 S 9 5 526 4
5.35 542 3 9 M 11 4 538 5
5.45 557 i 13 M 15 6 551 7
555 567 1 12 SS 10 5 562 ki
5.65 578 2 12 M 11 5 573 7
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TABLE 14 (continued)

1 2 3 4 3 ? 8 9 10
5.75 585 3 8 s 7 3 582 5
5.85 597 2 9 W or Mi 12 5 592 | 4
6.05 (607) 4 {7) w 10 5 602) ] 2
6.15 618 2 7 N 1 5 613 2
6.25 628 3 6 w—M | 10 5 623 1
6.35 842 2 9 M 14 5 637 4
6.45 654 2 10 M-S { 12 5 649 5
6.55 665 2 10 M i1 5 660 6
6.65 677 2 10 S 12 6 671 5
6.75 (689) 4 13 w 12 5 684 7
6.85 (699) 4 12 w 10 6 (693) 5
7.05 714 1 14 S 15 7 (707) 1
7.15 724 1 13 N 10 5 719 8
7.25 735 3 13 w 11 5 730 8
7.35 745 1 12 SS 10 6 739 6
7.45 754 2 10 M 9 5 (749 | 5
7.55 765 1 10 SS 11 4 761 6
7.65 (776) 4 10 MS (11) 6 (770) 4
7.75 (7187} 4 10 W (1) 5 (782) 5
7.85 (798) 4 10 MS (D 5 (193)| 5
8.05 809 1 9 S 11 5 804 4
8.5 821 3 10 w 12 6 815 4
8.25 829 2 8 S 8 4 825 4
8.35 840 1 7 sS 1 4 836 3
8.45 850 i 6 MS 10 4 846 2
8.55 862 1 7 M 12 6 856 1
8.65 872 3 6 S 10 4 868 2
8.75 887 3 10 M 15 5 882 b)
8.85 898 3 10 w 1t 5 893 5
9.05 967 2 7 w 8 S 902 2
9.15 917 2 6 N 11 5 912 i
9.25 926 1 4 §S 9 5 924 | —14
9.35 938 2 S MS 12 4 934 1
9.45 (950) 3 6 WM 12 5 945 | 1
9.55 963 2 8 SS 13 4 959 4
9.65 974 3 8 Ss 11 4 970 4

.75 986 2 9 M 12 4 982 5
9.85 (994) 2 6 w 8 (4) (990} 2

10.05 1003 1 3 S 9 5) (998) {—1/-2
10.15 1016 1 5 M 13 5 1010 | —1
10.25 1027 1 5 M i1 5 1022 0
10.35 1038 3 5 w 11 4 1034 | 41
10.45 (1052) 4 8 ww 14 5 (1047) | 3
10.55 1067 4 12 M 15 7 (1060) | 5
10.65 1078 2 12 M 1 7 1071 5
10.75 1088 1 11 M 10 6 1082 5
10.85 1098 1 10 §S 10 6 1092 4
11.05 (1110) 3 10 WM 12 4 1106 6
11.15 1118 1 7 SSs 8 3 1115 4
11.25 1429 1 7 S 1 5 1124 | 2
11.35 1138 1 5 ss 9 4 1134 i
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TABLE 14 (continued)

1 2 3 4 1) e 1 8 9 10
11.45 1151 1 7 S 13 6 1145 1
11.55 1160 2 4 WN 9 5 1155 0
11.65 1173 1 7 MS 13 6 1167 1
11.75 1185 1 8 MS 12 5 1180 3
11.85 1193 1 5 M 8 3 1190 2
12.05 1202 1 2 sS 9 3 1199 | 0/—1
12.15 1219 3 8 M 17 7 1212 1
12.25 1228 1 6 M 9 4 1224 2
12.35 1239 3 6 M 11 6 1233 0
12.45 1249 3 5 wM 10 5 1244 0
12.55 1259 2 4 M 10 3 1256 1
12.65 1276 3 10 M 17 7 |(1269) 3
12.75 1288 1 11 M 12 6 1282 5
12.85 1296 3 8 w 8 5 (1291) 3
13.05 1308 2 8 M 12 7 1301 1
13.15 1316 2 5 M 8 5 1311 0
13.25 1324 2 2 M 8 5 1319 |3
13.35 1337 3 4 w 13 5 1332 |-t
13.45 1353 2 9 WM 16 7 1348 |42
13.55 1362 2 7 Ss 9 4 1358 3
13.65 1372 1 6 S$SS 10 4 1368 2
13.75 1382 2 5 MS 10 4 1378 1
13.85 1391 3 3 M 9 5 1386 | —2
14.05 1402 1 2 M 11 6 1396 1-3/—4
1415 | (1413) 3 2 ww 1 6 1507 |4
14.25 | (1429) 4 7 WM 16 8 |(421) {—1
1435 | (1439) 3 6 wH 10 5 1434 {1
14.45 1449 4 5 wM 10 6 1543 | —t
1455 1461 3 6 wM 12 & 1457 2
1465 | (1472) 4 6 ww 1 4 1468 2
1475 | (1480) 4 3 ww 8 & |(1476) | —1
1485 1492 4 4 WM 12 4 [(1488) 0
15.05 1505 3 5 (60) w 13 7 1498 |-1/-2
15.15 1519 1 8 | (80) M 14 7 1512 |44
15.25 1528 1 6 | (150) SS$ 9 3 1525 |43
15.35 1539 1 6 | (130) S 11 4 1535 |42
15.45 1548 1 4 [ (120) S 9 5 1543 | —1
15.55 1558 1 3 | (160) S8 10 5 1553 | —2
15.65 1572 1 6 [(150)| SS 14 5 1567 |41
15.75 1581 1 4 | (130 S 9 3 |1578 |44
15.85 1501 2 3 | (0] waM |10 4 1587 | —1
16.05 16045 | 2 4 | 80)| wM 13 5 1599.5 {0/—1
1615 | 16155 | 1 4 | (90) M 11 4.7 | 16108 { —0.7
16.25 16260 | 1 35| (100)| MS 105] 7 16190 | —3.5
16.35 16395 | 1 6 | 00| WM 135 ] 55 | 16340 | 405
16.45 16400 | o 45| “40)| ww 95| & | 16450 | 405
16.55 16600 | 1 45| 50| ww 110} 5 1655.0 | —0.5
16.65 16750 | 1 85 (60) w 150] 9 16660 { —0.5
16.75 16850 | 1 75| 500 ww 100 | 55 | 16795 | -+2
16.85 16930 | 1 45| (30| www | 80| 35 | 16895 |41
1705 | 17055 | t 50f (50)] ww | 125 | 7.5 | 16980 —1%-
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TABLE 14 (continued)

1 2 3 4 13 [ § 1 8 10
17.15 1718.2 1 6.7 (130) S 127] 62 | 17120 | 405
17.95 17215 1 50| (14m | SS 93| 40 | 17235 |+10
17.35 1738.7 1 521 (110) S 112 ] 47 | 17340 | 405
17.45 17503 (. . .| 58( 80 N 146 | 5.3 | 1745.0 {405
17.55 17615 1. . .| 60f 9% N 112 63 | 1755.2 |—03
17.65 1769.7 .l 32] 110 S 821 32 )17665! 0
17.75 1778.4 .| 409] 150 SS 87| 29 117755 [ —-20
17.85 1788.1 .| —0.4) 130 S 97| 34 | 17847 | 38
18.05 1805.2 L] 471 50 ww 174 | 69 | 17983 —1.§/2_
18.15 18164 |. . .| 49] 50 | ww 112 | 58 | 18106 | —09
18.25 18299 (.. .| 74 70 wM 135! 66 | 18233 | —08
18.35 1837.2 |. . .| 3.7] 140 S8 73| 33 | 4833.9 | 404
18.45 18484 |. . .| 3.6 120 S 109 | 46 | 18435 | —1.0
18.55 18601 |. . .| 46| 100 MS 120 | 4.1 | 1856.0 | 405
18.65 18706 |. . .| 41| 140 SS 105 | 3.4 | 1867.2 [+07
1875 18839 |. . .| 6.4] 60 w 133 ] 50 | 18789 | +1.4
18.85 18041 |. . .| 56| 90 M 102 | 45 | 1889.6 |4-1.1
19.05 19070 |. . .| 65| 60 w 129 | 53 | 1901.7 [41.2
19.15 19176 |. . .| 6.1] 100 MS 106 | 40 | 1913.6 |24
19.25 19284 |. . .l 59| 80 wM 108 | 4.8 | 1923.6 | 411
19.35 19374 |. . .| 29} 110 S 90| 36 | 49338 | 403
19.45 19475 |, . .| 30| 150 Ss 104 { 3.3 | 19442 { —02
1955 | (19585)| 2 31...] Ss ... @ |Uesas!)| (—1
19.65 | (19725)| 2 ®1...] M |...]® [(19665 )
19.75 | (19845)| 2 ... SsS .. .| ® 1119785 (41)
19.85 | (19945)| 2 ® [... S ... ) [11989.5)] (41)
2005 | (20045 ) 2 l@ml. .. S |...] @& [120005)(+1/0)
2015 | (20145)| 2 @&f... M .. .| 5 | 2009.5)) (—2)
2025 | (20255)} 2 @Y. .o oo Jowelewolloee)ons

An examination of the data for the period since 1610 shows that the
minimum generally precedes the maximum by 4 years if the maximum is
strong or very strong, by 5 years if the maximum is moderate or moder-
ately strong, and by 6 years if the maximum is weak. The intervals of
time elapsing from minimum to maximum, for the period since 1850, satisfy
the formula

£=17—0.03W,, (4.16)

where W y is the yearly maximum Wolf number. The minimum following a
weak maximum is generally separated from it by about 6 years, while the
minimum following a strong maximum is separated from it by about 7 years.

It is interesting that the table also implies the existence of the 80-year
to 90-year cycle, not only for the period considered by Gleissberg but also
for a much earlier time. The sunspot cycle is longer in weak (according
to the polar auroras) periods and shorter in active periods.

The average sunspot cycle over about 500 years ranges between 11,03
and 11,14 years. Since 200 B.C. there have been an average of 90 to 91
cycles per millennium. The positions of the minima of the 11-year cycles
are fairly well approximated by the arithmetic progression 1932 —155. 2 n,
where n is the cycle number. This formula makes it possible to compute
the epochs of minima which are not given by observational data. In addi-
tion to the 80-year to 90-year cycle, the variations in the lengths of the
l1-year cycles since 1510 can be represented quite well by a long 160-
year to 170-year cycle. The average cycle during the periods 1560-1530,
1750-1790, and 1900-1950 was 10 years long, while that during the periods
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1600—1670 and 1780—1820 was 12 years long. This alternation in cycle
length follows indirectly from the 200-year cycle of polar-aurora activity.

Periods of increased auroral activity in even centuries are character-
ized by two maxima with a short quiet period in between. The midpoints
of the maxima about the short quiet periods are as follows: 1755, 1555,
1350, 1160, 955, 755, 540, 340, ..., the period between the two basic
peaks being about 50 years.

The average behavior of the 11-year sunspot cycles starting with 900
A.D. may be expressed as follows:

Years after

Year Residue Intensity preceding

maximum
07 Q) | 4 ces
17 (6) § 10
27 &) ) 10
38 O] ) 11
50 (6 M 12
61 (6) s 11
72 (6) Ss 11
82 % s 1
91 3 wH 8
03 (4/3) wM 12

This table can, provided the 80-year to 90-year cycle is taken into account,
be used as a key for the prediction of future 11-year cycles. Schove has
also discovered evidence for cycles with durations of over 200 years, in
particular a 554-year cycle, but he does not claim that these cycles actually
exist. Itshouldbe noted that the 554-year intervals occur between the high-
est-intensity maxima of solar activity.

Thus, Schove's method for ultralong-range forecasting is suitable for
even centuries only and does not take into account cycles longer than 80
or 90 years. Schove used his method to forecast the main characteristics
for cycles 19 through 25. It is true that for the 19th cycle Schove followed
Gleissberg (1944b) in assuming that this cycle should be very strong, so
that he dated the central maximum at 1970 rather than 1960. However, with
all its shortcomings, Schove's method is of unquestionable interest simply
because of the vast amount of data on which it is based. There is, of course,
a certain amount of uncertainty involved in the historical data used, but this
still does not justify a total rejection of these data, especially after the very
careful analysis made by Schove.

§ 8. Forecasts of Sunspot Areas

So far we have just considered the forecasting of Wolf numbers. Until
very recently, no methods for forecasting the sunspot areas had been de-
veloped, and the first steps in this direction were taken only in the last
few years. Just as for the Wolf numbers during the first years of develop-
ing prediction methods, most of the attempts made to develop methods have
been directed toward ultralong-range forecasting of sunspot areas.
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It should be noted first that, since the data available for the spot-group
areas only cover seven complete 11-year cycles, most of the properties
described should be considered as purely qualitative. In this case, there-
fore, high accuracy of the forecasts is not to be expected.

Two methods have been worked out for spot-group-area prediction, that
of Xanthakis (1959) and that of Bezrukova (1958). Since the method of
Xanthakis has never been applied in practice, except for back calculations
over previous cycles, therefore it will not be considered in detail here and
it will only be discussed briefly at the end of the section.

Bezrukova's method is based on the asymmetry of sunspot activity in the
northern and southern solar hemispheres, a factor which was discussed in
detail in Chapter I, § 9. In practice, forthe prediction of allthe character-
istics of the 11-year solar cycle, this method is applicable only to odd
cycles (Zurich system). This method will now be considered using the fore-
cast of spot areas for the 19th cycle as an example.

Let us recall that, according to Bezrukova, during any given cycle the
cyclical curve is single-maximum in one of the solar hemispheres and de-
formed {(or double-maximum) in the other. Therefore, the following char-
acteristics of the 11-year cycle for the spot-area index can be determined:
the height of the single maximum and the height of the corresponding point
on the double-maximum curve. In order to determine the sunspot-group
area in the year of maximum of the single-maximum cycle, let us make use
of the correlation between the spot areas in the year of the first maximum
of a double-maximum even cycle and the spot area in the year of maximum
of a single-maximum odd cycle. Table 15 gives the corresponding data for
cycles 12 through 18.

TABLE 15

Spot areas for solar hemispheres in the epochs of extrema of the 11-year cycles
(according to Bezrukova)

First maximum of Maximum of
Cycle . : ; :
double-maximum single-maxi- Ratio
number
cycle mum cycle
12 500 815 1,882
13 607 941
14 400 750 1,977
15 318 860
16 663 679 1,986
17 678 1317
18 1127 1645
19 (2250)

The table indicates that, for all three pairs of cycles designated in the
fourth column of the table, the spot area of the single-maximum odd cycle
is almost twice as great as the spot area of the first maximum of the pre -
ceding double-maximum even cycle. If we take into account the gradual
increase of this ratio, then we see that for the 19th cycle the spot-group
area in the year of maximum of the single-maximum cycle can be expected
to be 2250 millionths of a solar hemisphere (m.s.h.). If we take the second
differences into account, we obtain 2297 m.s. h.
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We next plot the spot area of the single-maximum cycle in the year of
maximum as a function of the spot area in the year of the first maximum of
the double-maximum cycle. The graph shows that the relationship is linear
for the three pairs of cycles. If on the straight line we read off the point
corresponding to 1127 m._s.h., then we obtain 1820 m.s.h. Then, by taking
the average of the two values found for the spot area in the year of maximum
of the single-maximum cycle, we obtain 2050 m.s.h.

In order to find the spot area of the double-maximum cycle in the year of
maximum of the single-maximum cycle, let us refer to Table 16. This table
shows that the ratio between the spot area of the double-maximum cycle and
that of the single-maximum cycle in the year of maximum of the single-
maximum cycle is variable. This ratio apparently follows a 44-year cycle.
If we take this factor into account, then we can determine the spot area of
the double-maximum cycle in the year of maximum of the single-maximum
cycle from the previously determined spot areas in this year. The numbers
in parentheses for the 19th cycle were obtained using spot areas of 2297 m.s.h.
and 2050 m.s.h., respectively, for the single-maximum cycle.

TABLE 16

Spot areas for solar hemispheres in the year of maximum of the single-maximum
cycle (according to Bezrukova)

Cycle Single- Double-
Year maximum | maximum Ratio Difference
number
cycle cycle

12 1883 340 815 2.379

13 1893 517 941 1.820

14 1905 440 150 1,704

18 1917 677 860 1,270

16 1927 379 679 1,791

17 1937 757 1317 1.739 > ggf

18 1947 992 1645 1,658 ’

19 1957 (1440) (1.592)

(1290)

For the two remaining characteristics of the double-maximum cycle,
Bezrukova's method gives only a very approximate estimate. An analysis
of the data shows that the area of the first maximum of the odd double-
maximum cycle in every pair of cycles does not exceed the area of the pre-
ceding even single-maximum cycle in its year of maximum. On the basis
of this, it may be assumed that for the first maximum of the 19th double-
maximum cycle this area does not exceed 1645 m.s.h, On the other hand,
the behavior of the Hale pairs of cycles implies that this area should be
greater than the spot area of the previous cycle, which was 1127 m.s.h.
Moreover, this area is definitely greater than the spot area of the double-
maximum cycle in the year of maximum of the single-maximum cycle,
that is, it is greater than 1290 m.s.h. This also applies to the area of the
second maximum of the 19th double-maximum cycle.

Bezrukova's forecast for the 19th cycle is a fairly accurate one, and this
justifies the use of her method for the prediction of spot areas. The main
defects of the method are its limited applicability (it applies to odd l1-year
cycles only) and the semiqualitative nature of the estimates obtained.
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The method of Xanthakis (1959) is based on the relationghip between the
principal characteristics of the 11-year cycle and the length of its rising
part. Let us introduce the following quantities: §, and §_, the maximum
spot areas in the northern and southern solar hemispheres; N, the cycle
number; and ¢, and t,, the lengths of the rising part of the cycle in the
northern and southern hemispheres,

If ¢,and i, are expressed in solar rotations, then, accordingto Xanthakis,
the maximum spot areas (per rotation) in the northern and southern hemi-
spheres can be computed from the expressions

S, ==1056 4 2.6 (£, — 65)* -+- 730 sin (V —5) 2%, (4.17)
ss=1280+5.8(:s_ezy—ssosin(zv—s)is’i. (4.18)

For the entire solar disk, the average monthly maximum spot area is
S=21714-2.37 (¢ — 65)*, (4.19)

where t is in months. To calculate the yearly maximum sunspot area, we
use the formula

§=1060--1.65 (t —67)3, (4.20)
where ¢ is in months, or the formula
8§ =1100+4- 240 (¢t — 5.6)%, (4.21)

where ¢ is in years.

The method of Xanthakis gives quite satisfactory results in back calcula-
tions, but for forecasts its accuracy is apparently much lower, since the
prediction of the length of the rising part of the cycle is very complicated.
Xanthakis did not concern himself with this problem at all, although it is
of primary significance for his method. Actually, the variation of the length
of the rising part of the 11-year cycle for the spot areas is so complex in
nature that is impossible to refer, with any degree of certainty, to anything
other than a purely qualitative estimate. Thus, the quantitative value of
Xanthakis's method is practically negligible, and the method is of academic
interest only. In this aspect it is similar to Schuster's method (see § 2 of
this chapter), which served more or less as a point of departure for the
development of other methods of ultralong-range forecasting of Wolf num -
bers, these other methods being useful for practical forecasts.

It seems to us that, due to the obviously insufficient volume of available
data, no reliable method for the ultralong-range forecasting of spot-group
areas can be developed at present. Much more success is possible, how-
ever, using methods for the prediction of this index within the current 11-
year cycle. Therefore, special attention should now be given to the study
of the intracycle regularities in the variation of sunspot-group areas.

§ 9. Concluding Remarks

Ultralong-range forecasts of solar activity, in spite of their long history,
still do not give satisfactory resuits. Different methods often lead to dia-
metrically opposite conclusions, so that the difficulty is further increased by
the fact that we cannot take averages of the results obtained by the various
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methods without leading to error. Suffice it to say that the forecasts
offered by different authors for the 19th cycle ranged from 30 to 208, This
wide range of predicted heights for the 19th cycle is due more to fundamental
differences in the initial assumptions of the various authors than to an in-
herently low accuracy of the ultralong-range forecasts. Therefore, we are
forced simply to prefer some particular forecast mainly on the strength of
its basic premises.

Of all the methods for the ultralong-range forecasting of Wolf numbers
discussed in this chapter, special attention should be given to the methods
of Gleissberg and Ol', and especially to the latter since it provides a means
of internal contrel. Finally, let us note that, in view of the preceding con-
siderations, any evaluation of the forecast accuracy in this case is meaning-

less.
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Chapter V

FORECASTS OF THE BASIC CHARACTERISTICS
OF THE 20TH CYCLE

§ 1. General Considerations

Forecasts of the basic characteristics of the 20th solar cycle are especi-
ally difficult, chiefly because, according to most investigators, the 19th
sunspot cycle represents the extremum of the 80-year to 80-year cycle and
is distinguished by an exceptionally high intensity. In any case, no 1l-year
cycles with comparably high intensities have been recorded during the entire
period of telescopic observations of the sun. Almost everyone agrees that
the next (the 20th) cycle will definitely be lower than the current (the 19th)
cycle. However, what we wish to determine is just how much lower it will
be, and this is the main problem.

So far, when giving forecasts for the cycle to come, it has been suffici-
ent merely to take into account the properties of all the cycles recorded
during the period of telescopic solar observations. The 19th cycle, how-
ever, was the first extraordinary cycle to be observed, and the predictions
made for it have shown that certain additional, still unknown, factors must
be taken into consideration. Nevertheless, the 19th cycle, which was odd,
was the second cycle of a Hale pair, and this simplifies the problem to a
certain extent. But now we are faced with a dilemma, namely whether the
drop in activity from the present cycle to the next cycle will be exception-
ally large or whether it will remain almost equal to the previous drop (that
is, not more than 80 or 90, in terms of Wolf numbers). This uncertainty
has led investigators to seek new methods of ultralong-range forecasting,
and in some cases to seek even purely qualitative methods. Up to the pres-
ent very few works have been published on this subject, but these will be
discussed in detail in this chapter,

The only exception to the prevailing opinions for the predicted trend of
solar activity is that of Chadwick (1959) and his viewpoint is as follows.
Since it is equally certain that 178-year and 169-year sunspot cycles exist,
this author maintains that there is equal certainty that the next (20th) cycle
will be either higher or lower than the 19th cycle. Now, this proposition
actually contibutes nothing outside of its skepticism, and in fact it is also
equally certain that the 178-year and 169-year sunspot cycles are purely
hypothetical. This is the reason, by the way, why these cycles are not
taken into consideration in any of the forecasts for the 20th cycle. Conse-
quently, Chadwick's viewpoint will be disregarded in the following.

In addition, a new element which has only recently appeared in connec-
tion with forecasting the basic characteristics of the 20th cycle is the de-
velopment of an alternative approach to the prediction of the epochs
of extrema for the ll-year cycles. This new approach is largely due
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to the fact that the regressions of Waldmeier (1935), which correlate the

temporal characteristics of the 11-year cycle with its intensity, now give
a much lower accuracy than when they were originally applied. This may
be caused by the existence of some'long' cycle of solar activity which so

far has escaped notice (see Chapter I, § 11).

Finally, the various difficulties involved have led many authors to give
forecasts for only some (or even for just one) of the characteristics of the
20th solar cycle and toconfine themselves to individual comments concern-
ing the other characteristics or simply to neglect them entirely.

§ 2. Bezrukova's Forecast

The forecast of Bezrukova (1959b) gives only the heights of the 20th and
21st sunspot cycles and is semiqualitative in nature, The method used is
somewhat reminiscent of that of Chvojkova (see Chapter IV, §5) but is
considerably simpler than the latter.

Bezrukova considers separately the variations in height of odd and even
ll1-year cycles. She observes that for odd cycles this variation is more
regular than for even cycles, and that for odd cycles there is an alterna-
tion of the heights of many-year cycles made up of odd cycles., As shown
by Figure 15, many-year cycle I is high, cycle II is low, and cycle III is
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once again high. In addition, the high maximum of cycle I is followed by a
low minimum in the fifth 11-year cycle, while the low maximum of cycle II
is followed by a high minimum in the 13th cycle. It is likely that the high
maximum of cycle III will be followed by a low minimum in the 21st 11-year
cycle, that is, that this cycle will be definitely lower than the 13th cycle,
whose maximum Wolf number was 84.9, If we assume that, as indicated
by Figure 15, the height of the minima of the many-year cycles continually
increases from the 5th through the 13th to the 21st cycle, then Wy for the
odd 21st cycle should be approximately 120.

The curve for the variation over many years of the height of the even
11-year cycles (Figure 16) also shows a gradual upward change inthe height
of these cycles. If we assume that in this case as well the height of the
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minima of the many-year cycles continually increases, then Wy for the
even 20th cycle may be about 75. If, however, these heights alternate in
pairs, then the 20th cycle will be lower than the 14th cycle, the maximum
Wolf number of which was 63.5,

Thus, according to Bezrukova's forecast, the maximum Wolf number
of the 20th sunspot cycle will be less than 64 or else about 75, while that
of the 21st cycle will be less than 85 or about 120, Earlier, Bezrukova (1959a)
had found from an analysis of the curve for the variation of sunspot activity
over many years that the maximum Wolf number of the 20th solar cycle
could be from 45 to 85. Her later forecast (1959b) gives a somewhat nar-
rower range of Wolf numbers, so that a separation of the cycles into even
and odd improves the forecast appreciably.

Despite the qualitative nature of Bezrukova's forecast, it appears to be
more reliable than that of Chvojkova (Wy = 30 for the 20th cycle), which is
based on approximately the same premises as Bezrukova's method but which
involves a quite complicated mathematical apparatus.

Bezrukova does not give the epochs of extrema of the 20th and 21st sun-
spot cycles, since her method does not enable a prediction of these char-
acteristics of the 11-year cycle. This is obviously one of the main defects
of this method of forecasting. Moreover, Bezrukova's method actually as-
sumes that the behavior of the 80-year to 90-year sunspot cycles will not
change in the future. That this is true seems to us to be very unlikely, and
consequently Bezrukova's forecast for the 20th cycle may well be too low.
The advantages of Bezrukova's method are its simplicity and the fact that
it utilizes the properties of the 22-year sunspot cycle, properties which
have a definite physical significance.

§ 3. Minnis's Forecast

Forecasting the height of the 20th sunspot cycle has been considered in
more detail by Minnis (1960), who takes as his initial data a series of twenty
maximum smoothed monthly Wolf numbers. He maintains that to establish
the height limits for the next (20th) sunspot cycle it is necessary to estimate
objectively whether this minimum will lie between certain specified limits.
In order to ensure higher reliability, Minnis applies three different methods,
employing 1) a direct sequence, 2) the frequency distribution of AW, and
W, and 3) an autocorrelation function. Let us now consider each of these
methods separately.

The differences AW between the maximum relative spot numbers can
be either positive or negative. Let us introduce the following notation: if
a given difference in the series has the same sign as the preceding one,
then this trend in the variation of successive maxima will be designated as
s; if two successive differences have opposite signs, then the trend will be
designated as 4. By applying this notation to the variations in height of the
maxima of the 11-year cycles, we obtain the following direct sequence,
which may also be easily deduced from Figure 1:

dsdssdsdsdddddddss
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We wish now to evaluate the relative probability that the next term in this
sequence will be s (in which case the next cycle will be higher than the
current cycle) or d (in which case the next cycle will be lower than the cur-
rent cycle).

The heights of the 11-year solar cycles since 1750 have ranged on the
average between 50 and 150, with the exception of the 19th cycle. Since
the average and most probable values of AWy are about 35, therefore it
can be expected that the probability of two or more successive changes in
the same direction will be lower than the probability of a sequence of
changes in the opposite direction. Thus the probability p, that s will occur
is lower than the probability (1—p,) that & will occur. This hypothesis is
actually verified by the frequencies of occurrence for s and d, which give
P, =0.4. Consequently, it follows that the probabilities p, and p;s that a
second and a third s will occur after one or two changes in the same direc-
tion are less than 0.4. Since p; > p,, we obtain the best agreement between
the computed and observed frequencies of occurrence of s and d by setting
D1=0.4, p,=0.3 or 035, and py=0.3.

Using these values for p, Minnis calculated the expected number of
occurrences for four possible combinations of s and d. Moreover, these
numbers were calculated assuming that s and d occur with equal probability
under all conditions. The results are given in Table 17.

TABLE 17

Expected number of occurrences for four possible combinations of d and $ (according to Minnis)

Probability Number of occurrences
l‘I
Py P. Pa dd ds sd ss
(a) 0.5 0.5 0.5 4.3 4,3 4.2 4.2 2.08
Calculated {(b) 0.4 0.35 0.3 6.3 42 4.3 2.1 0.19
(c) 0.4 0.3 0.3 6.5 4.4 4.3 1.8 0,17
Observed . - - - 6 5 4 2

The table shows that, according to the x: criterion, the fit obtained in
cases (b) and (c) is essentially the same as that in case (a). Nevertheless,
cases (b) and (c) appear more plausible on physical grounds and also be-
cause the probability of occurrence of seven successive d-terms, a com-
bination which is observed in the direct sequence, would have been less
than 0.01 for P= 0.5,

Thus it was decided that the best estimates are p,=0.3 and (1—p;)=0.7.
But since the direct sequence up to 1958 (see Figure 1) terminates in ss,
therefore the probability that the next cycle will be higher than the present
one is 0.3 and the probability that it will be lower is 0.7,

Let us now consider the frequency distribution of AW, The curve has
two maxima, and the mean and minimum frequencies of AW lie near
AW, = 0. Neglecting signs, we obtain an average value for /AWM/ of 35,
with a standard deviation of 23. Consequently, for a negative AW, between
the maxima of the 19th and 20th cycles the estimated value of W, for the
20th cycle is 168 £23, while for a positive AWy it is 238 + 23,
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It is also useful to note that AW, was greater than 75 in only one out of
nineteen cases and that it has never been greater than 92. A subtraction
for the current (19th) cycle shows that in the next (20th) cycle we may ex-
pect W,>>128 with a probability of 0.95 and W,>>111 with an even higher
probability. Analogous arguments based on the distribution of W lead to
the conclusion that the probability of W, <1569 in the 20th cycle is 0.95.

The next method used by Minnis consists in the use of an autocorrelation
function computed from a series of twenty values of W,. The form of this
function shows that periodicity apparently exists, the period length being
seven or eight 11-year cycles. However, except for the cases r=1and
r=23 (where ris the distance between the correlated values of W,, expressed
in cycles), the autocorrelation coefficients are not appreciably different
from zero.

The author next applies the (W, W,' «+y) FEEression equations for r=1
and r=3 to forecastthe height of the next (20th) cycle. The values obtained
for the maximum smoothed monthly relative spot numbers are 154 £+38 and
97 +36, respectively. It should be noted that even in these cases the auto-
correlation coefficients are low, while the standard deviations of the esti-
mates obtained are too high., Therefore, it can hardly be expected that this
method will give forecasts of high accuracy.

In order to obtain the most reliable results, Minnis combines all his
estimates of the height of the 20th sunspot cycle, these being listed in
Table 18.

TABLE 18

Estimates of height of 20th sunspot cycle (according to Minnis)

Method used WM Probability

1 Direct sequence . . . . . . . > 208 0.3

2 Direct sequence . . . . . . . << 203 0.7

3 Distribution of Wpy . . . . . . < 159 0.95
4 Distribution of AWy . . . . . > 128 0.95
5 Distribution of AWjye. . . . . . > 111 >0.95
6 Distribution of AW“. S e e 238123 0.68
1 Distribution of AWH. e e e 168+ 23 0.68
8 Autocorrelation (r==1) . . . . . 154438 0.68
9 Autocorrelation (r=3) . e L 97136 0.68

R - — P — .

The most objective means of combining these individual estimates would
apparently be to calculate the average of estimates 6 through 9 and to weight
each estimate in inverse proportion to its variability [standard deviation].
Moreover, the weights of estimates 6 and 7 should be reduced to 0.3 and
0.7, respectively, in order to make them compatible with estimates 1 and
2, so that their combined weight is unity, just as is the [combined] weight
of estimates 8 and 9. If this procedure is followed, then, with a probability
of 0.68, the maximum smoothed monthly Wolf number for the 20th solar
cycle should lie between 104 and 218.

However, this interval is very wide, mainly because it was obtained
using estimates whose probabilities are definitely negligible. Actually,
there is a probability of 0.3 that the value of AWy between the maxima of
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the 19th and 20th cycles will be positive. Thus it follows that the probability
that Wy >159 is only 0.05 (estimate 3). If we assume that these two calcu-
lations are independent, then their combined probability is only 0.02. Con-
sequently, in practice we may reject the possibility that the 20th cycle will
be higher than the 19th cycle. Thus estimate 6 can be dropped, and the sub-
sequent discussion can be confined to estimates 3, 4, 5, 7, 8, and 9 only.

The weighted mean for estimates 7 through 9 is 149, with a standard
deviation of 45. Consequently, the probability that in the 20th cycle Wy will
lie between 104 and 194 is 0.68. Estimates 3 and 5 taken together lead to
the conclusion that the height of the next (20th) cycle will lie between 111 and
159, with a probability of 0.9. Both of these estimates show that the maxi-
mum Wolf number for the 20th cycle will apparently be greater than 108,
which is the average height of the last twenty sunspot cycles for the years
1750 through 1950,

The final limits for the height of the 20th cycle which were adopted by
Minnis are 110 to 160, with a probability of 0.75. Minnis's forecast is actu-
ally based on the variation of solar activity during the last twenty cycles,
and thus it has the same disadvantages as Bezrukova's forecast. However,
in contrast to Bezrukova, Minnis uses quantitative methods. On the other
hand, the probabilities that he gives do not actually characterize the reli-
ability of any of his estimates. In this respect, the methods used by Minnis
are to some extent similar to Gleissberg's method. Finally, Minnis attaches
too much significance to the average values of AWy, although, as shown by
Figure 1, exceptionally high 11-year cycles are followed by a very sharp
drop in sunspot activity.

Minnis arbitrarily gives the epoch of maximum of the 20th solar cycle
as 1968. However, he does not deal especially with this subject and appar-
ently gives this year only because during recent 11-year sunspot cycles the
epochs of maximum have occurred at intervals of approximately 10 years.
The year given by Minnis should thus be regarded as just a synonym for the
20th cycle.

§ 4. Gleissberg's Forecast

In order to forecast the main characteristics of the 20th solar cycle,
Gleissberg made use of a modification of the probability method developed
by him previously. This modification consists in introducing basic rela-
tions from which the main characteristics of the next 11-year cycle may
be determined with maximum possible probabilities of 90 and 95 % (Gleiss-
berg, 1952),

As previously, the method is based on a determination of the trend of the
variation in the parameter (3. If this quantity increases, then the upper
limits of the other characteristics of the 11-year cycle, such as the height,
are determined, and vice versa,

Let the number of the forthcoming solar cycle be n, so that the number
of the current cycle is rn—1 and those of the three preceding cycles are n-2,
n-3, n-4. The quantity % is here the average reduced length of the rising
parts of cycles n—4, n—3, n—2, and -1. Asafirstapproximation, letus



assume that ¥ remains the same for cyclesn—3, n—2, n—1, and n as well,
and let us denote it in this case as {#*. Finally, §,(z) is defined as the sum
of the values of some parameter z for the three cyclesp—3, n—2, and n—1.

If the maximum of cycle n—1 has passed, then we know its W_, W, i,
and f,. On the basis of these data, we can give a forecast for the next cycle,
with probabilities of 90 and 95 %, using the following formulas:

with a probability of 90%
t, S 4 —S,(t,)F 2,
>1100 .
w —20t4° — S (W),

X Z21420
o —160 (5.1)
6= 104" — S,(t,) —170,
>114.0 .
Walgo— 282" — S, (W),

with a probability of 95%
tSa® — S t,)F 1,

>1080 .
Wy 21140 — 208" — Sy (W),

b 2 106" — S,(t) Tygp -2
>110.5 .
Wa Zipog— 28268 — S,(W,),

It should be noted that these probabilities of 90 and 95% refer not to the
entire forecast for the next cycle but only to each of the given relations
individually.

If for cycle n-1 we also know Y/, W, along the descending part of the
cycle, thenwe know the valueof %; and so the forecast for the next cycle
can be supplemented by the prediction of t; using one of the following
relations:

with a probability of 90% with a probability of 95%
385 . 380 .
t,z3go—5t(") — S5ty (5.3 tfz395_5t9) — S5t (5.4)

Let us now proceed directly to Gleissberg's forecast for the next cycle
(Gleissberg, 1960), As shown by Table 9, for cycles 16 through 19 we have
W =137.6, t9=29, and #{?=40. Thus, the preceding value of W gives for
the 20th cycle W,<(78.8 (in the case of the lowest cycle). We also see from
Table 9 that t#)can be expected to increase in the future. Then the height
of the next (20th) sunspot cycle can be forecast using the formula

W, <1140 — 209" — Sa(Wx)-
Here we can make use of the following data:
1 =29; Ss(Wx)': 119.2 4+ 154.8 4-201.3 = 472.3.

Consequently, it follows that, with a probability of 95%, we may expect
that for the 20th cycle
W, < 81.1.
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If W;"‘)= 137.6 is increased very slightly, then we still obtain a satis-
factory agreement with this forecast. As mentioned in the previous sec-
tion, the average maximum Wolf number for the last twenty solar cycles
is 108. Therefore, according to Gleissberg, the height of the forthcoming
20th cycle will be lower than the average.

In the same article Gleissberg gives amore accurate value of & for the
19th sunspot cycle. He claims that, with a probability of 95%, the smoothed
monthly Wolf number will reach !/; Wy no later than May 1963.

We may use formulas (5.2) to calculate the other characteristics (¢ and
W,) for the 20th cycle and also t, for the 19th cycle. Since S3(f,)=23+21+
+31="75, we have for the 20th cycle ¢,<{42. In order to determine the
epoch of maximum of the 20th cycle, we need to know ¢, for the 19th cycle.
From Table 9 we have S3(f)=45+37+41 =123, that is =17, so that in the
next cycle the smoothed monthly Wolf number will reach 1, W, (20) =~ 22 no
earlier than January 1965. By means of formula (4.6), we may now calculate
the value of a, which determines the epoch of minimum of the next cycle. If
we take £;>17, then we find that a >8, so that the epoch of minimum of the
20th cycle will occur no later than January 1964.

According to the Zurich data, S,(W,)=3.4+7.7+3.4=14.5. Consequently,
using the last formula in (5.2), we find that the minimum Wolf number in the
20th sunspot cycle will be less than 29,2, a value which is in our opinion
highly improbable. This improbability is apparently the reason why Gleiss-
berg did not quote it in his forecast.

It is also possible that the other characteristics calculated here for the
20th sunspot cycle using his method led to doubts in Gleissberg's mind. For
example, if we calculate &+¢,=42+17=59, then we find that the epoch of
maximum of the 20th cycle occurs in April 1968, This result coincides with
the epoch of maximum given without any evidence by Minnis. However,
even the formulas of Waldmeier (1955) set the epoch of maximum in 1969,
with a much higher height assumed for the 20th cycle (Vitinskii, 1961a).

The height of the 20th cycle predicted by Gleissberg is chiefly determined
by the heights of the twenty preceding 11-year cycles, that is, it is assumed
implicitly that the next cycle will necessarily resemble one of these twenty
cycles. In this sense, Gleissberg contradicts to some extent his own con-
clusion concerning the existence of a long-duration solar cycle (Gleissberg,
1944b). Finally, the preceding calculations show clearly how illusory are
the probabilities used by Gleissberg for the predicted characteristics of the
11-year sunspot cycle.

§ 5. The Forecast of O1'

Contrary to the preceding forecasts for the 20th sunspot cycle, the fore-
cast of Ol' estimates not only the height but also the epochs of maximum
and minimum. Since the prediction of the epochs of extrema is the newest
and most interesting facet of this forecast, let us first consider the method
used by O1' to determine these epochs for the 11-year solar cycles.

Newcomb (1901) showed that the most probable hypothesis, in this re-
spect, is the one which maintains that the temporal development of solar
activity is governed by a strict periodicity, with a period of 11.13 years.
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In order to verify Newcomb's hypothesis, O1' (1960) calculated the epochs
of extrema for the Wolf numbers from 1700 to 1901, using this period, and
compared the values obtained with the observed epochs, determined using
smoothed monthly Wolf numbers with an accuracy up to 0.1 year. The dif-
ferences Af_,, and Af_ obtained in this way were then averaged over four
cycles. Table 19 gives the averaged values At and At and also the
values of W, calculated using the same method.

TABLE 19
Deviations from epochs of extrema of the li-year cycle (accord-

ing to Ol7)

Cycle numbers [T Aimax W

-3, — 2, —1.0 +0.95 +1.45 18

1, 2, 3, 4 —1.72 —~2.30 120

5, 6, 17, 8 —0.20 +0,90 76

9, 10, 11, 12 —0.02 —0.10 106

13, 14, 15, 16 +1.60 +1.20 83

17, 18, 19 —0.66 —1.40 162

An examination of Table 19 leads to the following conclusions:

1. there is a regular alternation of positive and negative values of A_,m'
in successive cycle groups;

2. there is a positive correlation between the values of At and Af.,
for the corresponding cycle groups;

3. there is a negative correlation between At,,, and Af_,, on the one
hand, and Wx, on the other; - _

4. there is no systematic increase in the values of At and At for later
cycles,

Therefore, Newcomb's hypothesis is justified, with the minor addition
that the deviations of the observed epochs of extrema for the Wolf numbers
from the epochs calculated on the basis of the 11.13-year period are not
random, but rather that they depend on the overall level of solar activity.
This factor enabled Ol' to derive some correlation relations which could
be used subsequently to forecast the epochs of minimum and maximum for
the next 11-year sunspot cycle.

Ol' obtained the following coefficients rfor the correlation between
At,,, for a given even cycle and Af,, for the following cycles:

1) for the preceding odd cycle, + 0.60,
2) for the current even cycle, + 0.77,
3) for the next odd cycle, + 0,77,

Correspondingly, it was found that the coefficients for correlation be-
tween At,,, for a given odd cycle, on the one hand, and Alp,for the same odd
cycle and for the next even cycle, on the other, are +0.72 and +0.75, re-
spectively.

The coefficients for correlation between Af,,, and the values of W, and
EW are also quite high: they are respectively -0.78 £0.08 and —0.72 +£0,10.
It was also found that W for a given cycle and Af,,for the next cycle can
be correlated stochastically, with a correlation coefficient of — 0.64 +0.12,
whereas there is virtually no correlation between At  _and W, for any given

cycle.
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A very close correlation was established between A¢,,, and X W (with
r=-0.91). For the totality of even cycles this correlation is somewhat
higher (r=0.93) than for the odd cycles (r= - 0.78). On the basis of all
these correlations, Ol' obtained the following formulas for forecasting
the epochs of extrema of the next (20th) solar cycle:

(Atpin s;’:':‘ =0.625 (At ,, }°d¢- — 0.25, . (5.5)
(82,557 =0.925 (Atnll)g?gc, —0.13. (5.6)

For the current (19th) cycle, Atp,=~-2.5and At,,=~1.5. Thus, using
formulas (5.5) and (5.6), we find that (Aty,)e= 1.8 and (A, ),= —1.5.
Let us next extend Newcomb's series of epochs of extrema for the Wolf
numbers, constructed on the basis of the 11.13-year period, up to the
beginning of the next century (see Table 20).

TABLE 20
Cycle number Epoch of minimum Epoch of maximum
19 1955.8 1960.4
20 19617.0 1971.5
21 1978.1 1982.6
22 1989.2 1993.8
23 2000.3 2004,9
|

Now , taking into account the values of (Afy.)s and (Al )s, we find that
the epoch of minimum of the next (20th) sunspot cycle should occur in
1967.0-1.8 = 1965.2, while the epoch of maximum should be in 1971.5~1.5=
=1870.0.

In accordance with the general tendency toward decreasing solar activity,
we may expect values of At and Af,,, for the 21st and 22nd cycles which
are close to zero, that is, the epochs of extrema of these cycles will be
close to those given in Table 18 [apparently, Table 20 is meant here]. In
the 23rd cycle these quantities may already become positive.

In order to estimate the height of the 20th cycle, Ol' (1961) used, in
general, the method discussed in Chapter IV, §4. The extrapolated value
of W@ for the 20th cycle can be taken as 125, and since we know that ZWy
for cycles 17, 18, and 19 is 456 we obtain

W, (20) = 125-4 — 456 = 44.

Thus we have some indication that the 20th solar cycle will be analogous

to the very low 5th cycle, which followed a cycle having the very high value
of ZW= 840. Actually, from the estimate of Ol' for the descending part of
the cycle, we have W (19)=21000, that is, in this respect the 19th cycle is
similar to the 4th cycle.

Independent (although very rough) estimates of W, for the 20th sunspot
cycle can be obtained using regressions between Aty,, and At,, and W, It
was found that between 3 =At,,, — Atp, and W, (for even cycles) the follow-
ing regression formula is valid:

W,=—31.48t 83 (r=—0.61). (5.7)

If we take the sums ZW'and Zat for neighboring cycles, combined into
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odd-even pairs, then we obtain the relation

W, =—21.5 20t -}-196. (5.8)

From the previously obtained values (Af,,);,= —1.8 and (Afy,)y = —1.5,
we find that 3=0,3. Then, after substituting this value into the last two
regression formulas, taking into account that for the 19th cycle W= 190
and 3= - 2.6, we find from the first regression that W_(20) = 74 and from
the second that W (20) = 23. The average of these is W,(Z‘(')) =48, avaluewhich
is in satisfactory agreement with the estimate obtained using the method for
ultralong-range forecasting developed previously by Ol',

The forecast of Ol' makes use of certain unique procedures, and an at-
tempt is made to achieve an intercontrol between the estimates obtained.

Of particular interest is the method for the independent determination of the
epochs of extrema of the 11-year cycles. Since Waldmeier's regression
correlating the height of the cycle maximum with the average lengths of its
rising and descending parts has been found to give a much lower accuracy
than when initially applied, therefore this new method is especially
valuable,

However, the forecast for the height of the next (20th) cycle, especially
using equations (5.7) and (5.8), appears to be rather poor. According to
this forecast, the maximum Wolf number will drop by about 140 to 150 from
the present cycle to the next cycle. No comparable drop has been observed
during the entire period of regular telescopic observations of sunspots (since
1700), On the other hand, Ol' uses the maximum relative spot numbers for
this period only, and therefore he cannot obtain any other result. If he had
used AWy only, then analogously he could not have obtained a difference
greater than 92. Thus, it may be concluded that cycles of higher order
must be taken into consideration. Unfortunately, the lack of available data
at present prohibits any progress in this direction, except for purely quali-
tative estimates. :

Finally, it should be noted in passing that the height of the 20th cycle ob-
tained by Ol' using equation (5.7) is in good agreement with Gleissberg's
estimates, provided we keep in mind that Gleissberg gives smoothed monthly
Wolf numbers rather than the yearly numbers.

§ 6. Vitinskii's Forecast

The forecast of Vitinskii (1961a) is qualitative in nature and is based on
the data of Schove's table (see Table 12). According to this table, an 11-
year cycle with an intensity comparable to that of the current cycle last oc-
curred in 1369—1378 (about 600 years ago). On the other hand, it is known
that in the 17th century solar activity was at an all-time low for the entire
period of telescopic solar observations. In Chapter I, §11 we gave some
arguments in favor of the existence of a 600-year cycle, so that there is no
point in repeating them here.

As observed previously (Chapter 4, § 7), Schove's data give Wy=285 to
120 and W= 145, respectively, for the 20th and 21st cycles, if the arbit-
rary notation used by Schove is replaced by the average heights of the
11-year-cycle maxima. It seems likely that, since the current cycle is
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comparable in intensity to the cycle of 1369—1378, the height of the 20th
sunspot cycle can be expected to be 100, as follows from Schove's table for
the 14th century. Let us note, too, that this value falls within the range of
Wy values predicted by Schove for the 20th cycle,

In order to forecast the height of the 21st solar cycle, we may use re-
gression equation (1.19) (see Chapter I, § 7). From this equation, taking
the height of the 20th cycle as 100, we find a value of Wy= 126 for the 21st
cycle. In this forecast the epochs of extrema obtained for the 20th sunspot
cycle by Ol' are used. The method of Ol' has unfortunately not yet been ap-
plied to the 21st cycle. Therefore, with great reservation of course, we
apply the corresponding equations of Waldmeier. Using these equations, we
obtain for the 21st solar cycle an epoch of minimum in 1976.0 and an epoch
of maximum in 1979.4,

Previously, Vitinskii tried to forecast the height of the 20th cycle from
the variations over many years of coefficients @ and F and the oscillation of
coefficient b in the Stewart-Panofsky formula (see Chapter I, §8). Without
mentioning that this method does not take into account long-duration solar
cycles either, let us note that it leads to very contradictory results. The
height of the 20th cycle is found to range from 50 to 120, Thig is due to the
fact that the oscillations of coefficient § are extremely uncertain, whereas
any slight change in the value of this coefficient will have an appreciable
effect on the result. Therefore, although this method of forecasting is of
some interest, the data at hand still are not sufficient to permit a success-~
ful application, and so this forecast can not be taken seriously.

§ 7. Baur's Forecast

Baur (1961) predicts the value of one characteristic of the 20th cycle,
namely its epoch of minimum. Baur's method is based on the quite close

correlation between the ratio -:— of the lengths of the rising and descending
parts of the cycle and the maximum smoothed monthly Wolf number W),
obtained from the data for eighteen 11-year sunspot cycles.

Let us define X,= :—, X,=W,, where z, and z, are the deviations from
the average values X, and X;. The average length of an 11-year cycle is
taken as 11.06 years. A study of the correlation between X, and X, for odd
cycles has shown that in this case it is linear and quite high (r=+0.88). In
spite of the small volume of data (n=9), this correlation coefficient is real,
since P=0.0027, Given ryand 0;=0.61 and a,=32.14, let us find the mathe-
matical expectation for the deviations z; from X, in odd cycles:

E (z,)=0.0167. (5.9)

In the current (19th) cycle, W,=200.8 and z,=+95.2, so that E(zy)=+1.59.
Since X, for the 9 odd cycles is 1.50, we obtain

E (:1)=3'°9' (5.10)

For the 19th cycle, t=1957.9—1954.3 =3.6, so that from (5.10) ¥ is found
to be 11.1years, that is, the next sunspot minimum will occur in 1969.0

100



and the duration of the present solar cycle will be 14.7 years. A compar-
able length has not been observed during the last 210 years.

Baur maintains that this result is due to the fact that for the highest odd
l11-year cycles the relation between z; and z, is actually nonlinear. In order
to overcome this difficulty, he introduces a new characteristic X4, which is
defined as follows. If t and ¥ are, respectively, the reduced lengths of the
rising and descending parts of the 11-year cycle, from the epoch of maxi-
mum to the last month in which the smoothed Wolf number is less than or
greater than '/, Wy, then X,=‘—:,. For odd cycles, the coefficient for the
correlation between X, and X, is rjy=+0.80.

An additional parameter is then introduced to obtain a more real coef-
ficient for the correlation with X,, namely

X‘ = VX, . X;-
The coefficient for the correlation between X;and X,is found to be ry =
=+ 086, so that in this case it can be considered real for n=9. The aver-
age value X,over the 9 odd 11-year cycles is found to be 12.92, with o=
=5.78. According to the values of ry,, 0,, and 0,, we obtain

E (z,)=0.091z, (5.11)

where z,; is the deviation of X, from the average value X..

For the current (19th) cycle #=1,75. In order to estimate T, Baur used
the smoothed monthly relative spot numbers up to May 1960, and after extra-
polation he obtained t'=2.92. Thus, X,=1.67 and X,=18.31, so that ;=
=5.39, When this value of z,is substituted into (5.11), we obtain Efz,)=
=+0.49, Then, X;=1.99, and since in the current cycle = 3.6 we find that
T=17.2 years, that is, the epoch of minimum of the 20th sunspot cycle should
be expected in February 1965. Since the expected error in X,is 0.21, there-
fore when the error is taken into account we see that the epoch of minimum
will occur between April 1964 and October 1965,

It was initially assumed that linear corrdlations between X, and X, and be-
tween X, and X, exist for odd 11-year cycles only. Let us now forget this
restriction and use 18 cycles rather than 9 cycles. For the 18 cycles we
have

X,=1.61, X,—12.88, o0,=0.59, 0,=0.59, ry==--0.79.

The coefficient ry; is somewhat lower for all 18 cycles than it was for the
9 odd cycles. However, its reality is much more likely than for the case
of odd cycles only.

Similarly to the foregoing, we find that

E (z,) =0.090z,. (5.12)
Since in the 19th sunspot cycle X,= 18.31, therefore we have
T
E (T)= 2.10. (5.13)

The expected error is 0,24, Thus we find that the epoch of minimum of
the 20th cycle is in June/July 1965 and that the margin of error for this
epoch extends it from August 1964 to April 1966,

Since it is still not clear which of the two alternatives of this method is
better, Baur resorts to the following artificial device. He selects the
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time interval in which the error is common for the two alternatives (August
1964 through October 1865) and continues it symmetrically in both directions,
until it corresponds to the margin of error for the first case. Then, he finds
that the next sunspot minimum should be expected between June 1964 and
December 1965. This result can also be obtained if, after calculating the
epochs of minimum using E(z,) for the two alternatives, we then take their
arithmetic mean, which is 1965.3 (April 1965), and finally measure off on
either side of this epoch the margin of error corresponding to the first case,

Baur's forecast is quite close to that of Ol', although the former is based
on the "eruption' hypothesis, while the latter is based on the properties of
the 80-year to 80-year solar cycle. It should be noted, however, that Baur
was unable to use as large a volume of data as Ol', because of the special
features of his method. Baur's results should thus be regarded as less re-
liable. Nevertheless, we have given them here not only because there are
still too few forecasts for the 20th cycle to allow us to discriminate but also
as an independent confirmation of the results obtained previously by O1'.

In conclusion, it should be pointed out, too, that Baur's method resorts
to mathematical methods involving certain very artificial features, and this
is not justified by the accuracy of the results obtained. Therefore, the
method cannot be recommended, in our opinion, for actual application.

§ 8. A Summary of the Results

This last section represents a summary of all available forecasts for the
main characteristics of the 20th sunspot cycle (Table 21),

TABLE 21

Author WM Epoch of minimum Epoch of maximum
Schove . . . 85—120 1966.5 1972.5
Bezrukova . . < 65—75
Minnis . . . 110—160
Gleissberg . . <88 1968
or . . . . 44—48 1965.2 1970.0
Vitinskii. . . L1100
Baur. . . . 1964.5—1965.9

It is still too soon to attempt any kind of analysis of this table, and only
the future can tell to what extent the forecasts discussed here will be suc-
cessful. In the meantime, as long as the forecasts are so few, readers
are referred to the relevant articles which will undoubtedly appear in the
near future.
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CONC LUSION

We have considered the principal empiricostatistical methods for the
long-range forecasting of Wolf numbers and we have shown that the reli-
ability of the results obtained using these methods still leaves much to be
desired. What, then, are the possible ways in which solar-activity fore-~
casts can be developed in the future?

First, a comprehensive approach to this problem must be worked out.
Even the most perfect theory of solar activity, if it were developed in the
very near future, would not give completely reliable results. However,
at present we still do not have anything which remotely resembles such a
theory, so that as a first stage we should seek some way in which satis-
factory results can be obtained even using just the individual theoretical
conclusions of solar physics.

The methods which were discussed here are virtually independent of the
morphology of solar activity. Nevertheless, a morphological approach to
solar-activity forecasting would in our opinion mean a real advance. This
is particularly important with respect to the development of short-range
forecasting. A morphological approach involves a study of the develop-
ment of centers of activity, that is, of all the layers of the solar atmos-
phere from bottom to top. The future course of sunspot activity can then
be evaluated according to certain preliminary variations which take place
in the other layers of the solar atmosphere. Moreover, observations of
solar radio emission in the centimeter range give us a look into the invisible
hemisphere of the sun a day or two before a spot group emerges over the
eastern limb onto the visible hemisphere (Molchanov, 1959; Ikhsanova,
1960). Consequently, these data provide us with a means for the short-
range forecasting of solar activity.

The morphological approach has still not been tested much with respect
to monthly forecasts. If it has been used at all, it has been regarded just
as being supplementary to statistical methods. Thus, it would be very inter-
esting to develop a morphological method for monthly forecasting which
could have equal status with the existing statistical method of Mayot.

At present, the only subject of solar-activity forecasting (not counting the
spot areas) is the Wolf numbers. However, except in uliralong-range fore-
casts, it would be very useful to develop methods for forecasting various
different indexes of solar activity. Then, parallel forecasts of different in-
dexes may even be used for an internal control of the reliability, if not for
every parameter, then at any rate for many of them.

Finally, it is of exceptional importance for forecasting that a compre-
hensive theory of solar activity be developed. Such a theory can be used
as a basis for the development of theoretical methods for forecasting the
golar indexes. Although the first attempt to do this, that of Rubashev
(1954), failed to give satisfactory results, still the fact that this problem
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was posed is a very valuable thing. It is hoped that in the near future science
will be able to solve the main enigma related to the sun, namely to determine
the reason for solar activity and to ascertain its mechanism. Quite recently,
Bjerknes's hydrodynamic theory of solar activity (Bjerknes, 1926) still seemed
plausible. Then, however, Alfvén (1952) published a theory which completely re-
futed Bjerknes's picture of solar activity and substituted magnetohydrodynamic
waves for it. Atpresent a synthesis of thesetwotrends is inprocess, andthis
has led to a vigorous development of magnetohydrodynamics. This is not the place
to discuss the many problems whicharebeingconsidered or have already been
solved in this new field of physics and astrophysics. However, it should be
mentioned that now hardly anyone doubts the basic fact that without taking
magnetic phenomena into account it is impossible to construct a valid theory
of solar activity. On the other hand, various investigators now pay special
attention to the study of the properties of differential solar rotation and of
its relation to the magnetic energy of the sun.

These are, in brief, the main trends observed in the solution of the prob-
lem of solar-activity forecasting. In order to summarize using even fewer
words, let us just mention that all studies of active processes taking place
on the sun, whatever the subject of these studies may be, will contribute to-
ward a solution of this important problem.
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TABLE 1

Monthly and yearly observations of Wolf numbers

So1

Year I II I v v VI VII VIII IX X XI XII JAverage
1749 58.0 | 628 70.0 55.7 | 850 83.5 94.8 66.3 759| 75.5 | 1586| 85.2 | 80.9
1750 733 75.9 89.2 883 1 900 100.0 85.4 103.0 91.2| 65.7| 63.3| 75.4 | 83.4
1751 700 | 435 453 | 56.4 60.7 50.7 66.3 59.8 235| 232 | 285| 44.0 | 47.7
1752 1+ 350 | 500 71.0 59.3 59.7 39.6 78.4 29.3 274 46,6 | 37.6| 400 | 47.8
1753 44.0 320 45.7 38.0 36.0 3.7 22.0 39.0 280| 2501 200| 67 307
1754 0.0 3.0 1.7 13.7 | 207 26.7 18.8 12.3 82| 241 | 132 42| 122
1755 10.2 11.2 6.8 6.5 0.0 0.0 8.6 3.2 17.8| 23.7 68| 20.0 9.6
1756 12,5 74 5.4 9.4 12.5 12.9 3.6 6.4 11.8| 143 { 17.0| 94| 102
1757 144 21.2 26,2 30.0 38.1 12.8 25.0 51.3 39.7) 325 | 647) 335 | 324
1758 37.6 52.0 49.0 72.3 46.4 45.0 44.0 38.7 625| 37.7 | 43.0| 43.0 | 476
1759 48.3 44.0 46.8 41.0 49.0 50.0 51.0 7.3 77.2) 59.7 | 46.3( 57.0| 54.0
1760 67.3 59.5 74.7 58.3 72.0 48.3 66.0 75.6 61.3) 506 | 59.7| 61.0 | 629
1761 70.0 91.0 80.7 .7 107.2 99.3 94.1 91.1 ;100.7| 88.7 | 89.7| 46.0 | 859
1762 43.8 72.8 45.7 60.2 39.9 774 33.8 67.7 685 693 | 77.8] 77.2 | 61.2
1763 56.5 31.9 34.2 329 32.7 35.8 54.2 26.5 68.4| 46.3| 609 61.4 | 45.1
1764 59.7 59.7 40.2 34.4 44,3 30.0 30.0 30.0 282 280 ) 260{ 257 { 36.4
1765 24.0 26.0 25.0 22.0 20.2 20.0 21.0 29.7 16.0 14.0 | 140 13.0| 209
1766 12,0 11.0 36.6 6.0 26.8 3.0 3.3 4.0 43| 5.0 57] 19.2| 114
1767 21.4 30.0 43.0 32.9 29.8 33.3 21.9 40.8 427 441 | 54.7| 533 | 3718
1768 53.5 66.1 46.3 42.7 1.7 774 52.6 66.8 748 77.8 | 90.6|111.8 | 69.8
1769 73.9 64.2 64.3 96.7 73.6 94.4 118.6 120.3 | 148.8(158.2 | 148.1 [112.0 | 106.1
1770 | 104.0 142,5 80.4 51.0 704 83.3 109.8 126.3 | 104.4|103.6 | 132.2/102.3 | 100.8
1771 36.0 46.2 46.7 64.9 152.7 119.5 67.7 585 | 101.4| 900 | 99.7| 957 | 81.6
1772 | 1009 90.8 314 02.2 38.0 51.0 71.3 56.2 505| 786 | 61.3| 640 | 665
1773 54.6 29,0 51.2 329 441 28.4 21.7 12.7 29.3[ 263 | 409) 43.2} 348
1774 46.8 65.4 55.7 43.8 51.3 28.5 17.5 6.6 79( 140 | 7.7 122 | 306
1775 44 090 11.6 1.2 3.9 123 1.0 7.9 32| 56| 54 78 10
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TABLE 1 {continued)

901

Year I 11 IIx v v VI Vi1 VIII IX X XI XII |Average
1776 21.7 11.6 6.3 21.8 11.2 19.0 1.0 24.2 16.0| 300 350| 400| 198
1777 45.0 36.5 39.0 95.5 80.3 80.7 95.0 1120 | 116.21 106.5} 146.0| 157.3| 925
1778 177.3 109.3 134.0 145.0 238.9 171.6 153.0 140.0 | 171.7| 156.3| 150.3| 105.0| 154.4
1779 1147 165.7 118.0 145.0 140.0 113.7 143.0 1120 | 111.0| 124.0| 114.0{ 110.0| 1259
1780 70.0 98.0 98.0 95.0 107.2 83.0 86.0 36.0 93.7) 710) 600 58.7) 848
1781 98.7 74.7 53.0 68.3 104.7 97.7 73.5 66.0 510 273 67.0| 352 681
1782 54.0 37.5 37.0 41.0 54.3 38.0 37.0 44.0 340 23.2, 31.5{ 30.0) 385
1783 28.0 387 26.7 28.3 23.0 25.2 32.2 20.0 18.0 80| 50| 105| 228
1784 13.0 80 1.0 10.0 6.0 9.0 6.0 10.0 10.0 80| 17.0( 140f 102
1785 6.5 8.0 9.0 15.7 20.7 26.3 36.3 20.0 320 47.2| 40.2] 2737 241
1786 37.2 416 417 85.4 92.3 59.0 83.0 83.7 | 111.5] 1123| 116.0| 112.7] 829
1787 134.7 106.0 87.4 127.2 134.8 99.2 128.0 137.2 | 157.3| 157.0} 141.5| 1740} 1320
1788 138.0 129.2 143.3 108.5 113.0 154.2 141.5 136.0 | 141.0( 142.0| 947} 129.5| 1309
1789 114.0 125.3 120.0 123.3 123.5 120.0 117.0 103.0 | 1120| 89.7| 134.0| 1355 1181
1790 103.0 1215 96.3 94.0 93.0 91.0 69.3 81.0 77.3| 843| 820: 740 899
1794 721 62.0 740 71.2 73.7 64.2 71.0 43.0 66.5] 61.7] 670! 660 66.6
1792 58.0 64.0 63,0 75.7 62.0 61.0 45.8 60.0 59.0| 59.0; 57.0i 56.0| 600
1793 56.0 55.0 55.5 53.0 52.3 51.0 50.0 29.3 240| 47.07 440, 45.7| 469
1794 45.0 44.0 38,0 28.4 55.7 41.5 41.0 40.0 1111 285| 67.4; 514 410
1795 21.4 39.9 12.6 18.6 31.0 171 129 25.7 13.5] 195! 250° 180 213
1796 220 23.8 15.7 3.7 21.0 6.7 269 | 1.5 184 11.0 841 51| 160
17197 14.4 4.2 40 40 13 111 43 6.0 5.7 6.9 58, 30 6.4
1798 2.0 4.0 12.4 1.4 0.0 0.0 00 | 3.0 2.4 15! 125, 9.9 41
1799 1.6 126 217 8.4 8.2 10.6 2.1 0.0 0.0 4.6 27 86 6.8
1800 6.9 9.3 13.9 0.0 5.0 23.7 21.0 19.5 11.5; 123 1 10.5 40.1 14.5
1801 27,0 29.0 30.0 31.0 320 31.2 35.0 387 335' 326, 39.8; 48.21 340
1802 478 47,0 40.8 42.0 44.0 46.0 48.0 50.0 51.8' 385 345 1 500 450
1803 50.0 50.8 29.5 25.0 44.3 36.0 483 34.1 453, 543°' 51.0. 480| 431
1804 45.3 483 48.0 50.6 33.4 348 29.8 43.1 530 623, 61.0 600 475
1805 61.0 441 51.4 375 39.0 40.5 37.6 42.7 44 4' 29.4 4|.0] 383 422
1808 3.0 29.6 327 217 26.4 25.8 300 263 | 240] 270| 250 24.0{ 2381




TABLE 1 (continued)

Average
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TABLE 1 (continued)

801

Year 1 I m v v vI v Vit IXx | x | X1 | XIx |Average
1838 1449 84.8 140.8 126.6 $37.6 94.5 108.2 78.8 73.6( 908| 77.4| 79.8| 103.2
1839 107.6 102.5 711 61.8 53.8 54.6 84.7 131.2 | 1327} 90.8| 688 63.6| 858
1840 81.2 81.7 55.5 65.9 69.2 48.5 60.7 57.8 740 49.8| 543| 53.7| 632
1844 240 29.9 29.7 42.6 67.4 55.7 30.8 39.3 354 | 285( 19.8| 388 36.8
1842 20.4 22.1 21.7 26.9 249 20.5 12.6 26.5 185) 384 | 405 17.6| 24.2
1843 133 3.5 8.3 8.8 211 10.5 9.5 11.8 4.2 53| 194 12.7| 107
1844 9.4 147 13.6 20.8 120 3.7 21.2 23.9 69| 21.5| 10.7| 21.6| 150
1845 25,7 43.6 43.3 56.9 478 314 30.6 323 29.6| 40.7| 39.4| 59.7( 404
1846 38.7 51.0 63.9 69.2 59.9 65.1 46.5 54.8 | 1074 | 559 60.4{ 655| 615
1847 62.6 44.9 85.7 44,9 75.4 85.3 52.2 140.6 | 161.2| 180.4| 138.9| 109.6 | 98.5
1848 159.1 111.8 108.9 107.4 102.2 123.8 139.2 1325 | 1003 132.4| 114.6| 159.9 | 424.3
1849 156.7 131.7 96.5 102.5 80,6 81.2 78.0 61.3 937 715 99.7| 97.0| 959
1850 780 89.4 82.6 441 61.6 70.0 39.1 61.6 86.2| 71.0( 54.8| 60.0| 66.5
1851 75.5 105.4 64.6 56.5 62.6 63.2 36.1 57.4 67.9( 625| 509 7i.4| 645
1852 68.4 615 61.2 65.4 54,9 46.9 42.0 39.7 375 67.3] 54.3| 45.4| 542
1853 4.1 42.9 37.7 47.6 34,7 40.0 45.9 50.4 335| 423 288) 234 390
1854 154 20.0 20.7 26.4 240 211 18.7 15.8 224 127| 282 214 206
1855 12.3 11.4 17.4 44 9.1 5.3 0.4 34 00| 97| 42| 31| 67
1856 0.5 4.9 0.4 6.5 0.0 5.0 4.6 5.9 4.4 4.5 7.7 7.2 43
1857 13.7 7.4 5.2 114 29.2 16.0 22.2 16.9 424 406| 31.4] 37.2| 228
1858 39.0 34.9 57.5 38.3 414 44.5 56.7 55.3 80.1| 91.2| 519| 669 54.8
1859 83.7 87.6 90.3 85.7 91.0 87.4 95.2 1068 | 105.8| 114.6| 97.2| 81.0| 93.8
1860 81.5 88.0 08.9 M4 1074 108.6 146.7 100.3 922} 904 979] 956 957
1861 62.3 718 101.0 98.5 56.8 87.8 78.0 82.5 799| 67.2| 53.71 80.5f 77.2
1862 63.1 64.5 43.6 53.7 64.4 84.0 73.4 62.5 66.6| 42.0] 50.6] 409, 59.4
1863 48.3 56.7 66.4 40.6 53.8 40.8 32.7 48.1 220| 399 38771 41.2] 440
1864 §7.7 474 66.3 35.8 40,6 57.8 54.7 54.8 285 339| 57.6] 286| 470
1865 48.7 393 39.5 29.4 34.5 33.6 26.8 37.8 21.6| 174 246] 12.8] 305
1866 31.6 384 24.6 17.6 129 16.5 9.3 12.7 7.3| 144 901 15{ 163
1867 0.0 0.7 9.2 5.1 2.9 1.5 5.0 49 98| 135 9.3| 252 73
1868 15.6 15.8 265 36.6 267 31.4 2856 344 | 438| 61.7] 59.4| 67.6] 3.




TABLE 1 (continued)

601

Year I I 111 v v VI VII VIII IX X X1 XII [Average
1869 60.9 59.3 52.7 410 104.0 108.4 59.2 | 79.6 80.6| 59.4| 774 1043' 739
1870 773 114.9 159.4 160.0 176.0 135.6 132.4 153.8 | 136.0| 146.4 147.5! 130.0 | 139.4
1871 88.3 1253 143.2 162.4 145.5 9.7 103.0 110.0 80.3| 89.0| 1054 903 {111.2
1872 79.5 120.1 88.4 102.1 107.6 109.9 105.5 929 | 114.6| 1035 1120 839 ' 101.7°
1873 86.7 107.0 98.3 76.2 4719 44.8 66.9 68.2 475| 474 55.4| 49.2: 663
1874 60.8 64.2 46.4 320 44,6 38.2 67.8 61.3 280 343| 28.9| 203) 447
1875 14,6 22.2 33.8 294 115 23.9 12.5 14.6 24| 127 117 9.9} 7.1
1876 143 150 31.2 2.3 5.4 1.6 15.2 8.8 99| 143 9.9 82F 113
1877 254 8.7 14.7 15.8 21.2 13.4 5.9 6.3 16.4 6.7| 145 23 123
1878 33 6.0 7.8 0.1 5.8 6.4 0.1 0.0 5.3 i1 4.4 0.5 3.4
1879 0.8 0.6 0.0 6.2 2.4 4.8 7.5 10.7 64| 123, 129 7.2 6.0
1880 24.0 21.5 19.5 19.3 23.5 34.1 21.9 48.1 66.0| 43.0; 30.7| 29.6; 323
1881 36.4 53.2 515 51.7 43.5 60.5 76.9 58.0 53.2| 64.0) 548| 473 543
1882 45.0 69.3 67.5 95.8 64.4 45.2 45.4 40.4 57.7| 59.2| 844 41.8| 59.7
1883 60.6 46.9 42.8 82.1 32.4 76.5 80.6 46.0 52.6| 838| 845| 759 063.7
1884 91.5 86.9 86.8 76.4 66.5 51.2 53.1 55.8 61.9( 47.8| 36.6| 47.2f 635
1885 42.8 71.8 49.8 55.0 73.0 83.7 66.5 50.0 396 387| 333| 21.7{ 522
1886 29.9 25.9 57.3 43.7 30.7 274 30.3 16.9 214 8.6 03] 124 254
1887 103 13.2 4.2 6.9 20.0 15.7 233 21.4 74| 66| 69| 20.7| 134
1888 12.7 74 7.8 5.4 7.0 74 3.1 2.8 8.8 24| 107 6.7 6.8
1889 0.8 8.5 7.0 4.3 24 6.4 9.7 20.6 6.5 24 0.2 6.7 6.3
1890 53 0.6 5.1 1.6 48 1.3 11.6 8.5 17.2| 11.2 9.6 7.8 74
1831 13.5 22.2 10.4 20.5 4.1 48.3 58.8 33.2 53.8| 51.5| 41.9| 322| 356
1892 69.4 75.6 49.9 69.6 79.6 76.3 76.8 101.4 628{ 70.5| 654 786| 73.0
1893 75.0 73.0 65.7 88.1 84.7 88.2 88.8 129.2 779| 79.7| 754 93.8] 849
1894 83.2 84.6 52.3 81.6 101.2 98.9 106.0 70.3 659| 755| 56.6| 60.0| 78.0
1895 63.3 67.2 61.0 76.9 67.5 71.5 478 68.9 57.7} 67.9| 47.2| 70.7( 64.0
1896 29,0 57.4 520 43.8 21.7 49.0 45.0 27.2 61.3] 284/ 38.0) 426/ 418
1897 40.6 20.4 29.4 31.0 20.0 11.3 27.6 218 484 143 84| 333| 262
1898 30.2 36.4 383 145 25.8 22.3 9.0 3.4 34.8) 344 309| 126 267
1899 19.5 9.2 18.4 14.2 7.7 205 13.5 28 84| 130; 178} {0 12.4
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TABLE 1 (continued)

111

Year 1 I IIr v Yy Vi VII VIII IX X XI XII {Average
| ! ] ' ]
1931 14.6 43.1 30.0 “ 3.2 | 246 153 : 174 13.0 190! 10.0 1 187, 178. 21.2
1932 124 10.6 112 | 112 179 222 | 9.6 6.8 4.0 89| 82 110 111
1933 123 22,2 104 29 3.2 5.2 2.8 0.2 5.4 3.0 } 0.6 03. 6.7
1934 34 78 43 | 1.3 19.7 6.7 9.3 8.3 4.0 5.7 8.7, 154 8.7
1935 18.9 20.5 23.1 12.2 21.3 45,7 33.9 30.1 42.1| 53271 642, 615; 36.1
1936 62.8 74.3 774 749 546 | 700 52.3 87.0 76.0| 89.0| 1154 123.4| 79.7
1937 [ 1325 1285 83.9 109.3 116.7 ] 130.3 145.1 137.7 100.7| 1249 | 744 888 1144
1938 | 98.4 119.2 86.5 101.0 127.4 97.5 165.3 115.7 89.6| 99.1| 1222 92.7| 109.6
1939 | 80.3 71.4 64.6 1091 | 1183 1010 97.6 1058 | 112.6| 884 684 424 888
1940 50.5 59.4 833 | 60.7 544 83.9 67.5 105.5 66.5{ 550 584 683| 67.8
1941 45.6 445 | 46.4 32.8 29.5 | 59.8 66.9 60.0 659 46.3| 383( 33.7| 475
1942 35.6 52.8 54.2 60.7 25.0 | 11.4 17.7 20.2 17.21 19.2] 30.7| 225| 306
1943 12.4 289 27.4 261 14.1 76 13.2 19.4 100 78! 102| 188| 163
1944 31 05 11.0 | 0.3 2.5 50 | 5.0 16.7 143] 169 10.8) 28.4 9.6
1945 185 12,7 215 32.0 30.6 36.2 | 42.6 25.9 349! 688 460| 27.4] 332
1946 476 86.2 76.6 75.7 84.9 735 116.2 107.2 94-4| 1023 1238} 121.7] 926
1947 115.7 133.4 129.8 149.8 201.3 163.9 157.9 1888 | 169.4| 1636 128.0} 116.5] 151.6
1948 108.5 86.1 94.8 189.7 174.0 167.8 142.2 157.9 | 143.3| 136.3| 95.8( 138.0| 136.2
1949 119.1 182.3 1575 147.0 106.2 1217 125.8 123.8 | 145.3| 131.6| 1435 1176 1351
1950 101.6 94.8 109.7 113.4 106.2 83.6 91.0 85.2 51.3| 61.4| 54.8| 541, 839
1951 59.9 53.9 55.9 92.9 108.5 100.6 61.5 81.0 831| 51.6; 524| 458 69.4
1952 407 22.7 220 29.4 23.4 36.4 39.3 54.9 282 3.8 224 343| 314
1953 26.5 3.9 10.0 27.8 12,5 21.8 8.6 23.5 19.3 8.2 16 25| 139
1954 0.2 0.5 10.9 1.8 0.8 0.2 4.8 8.4 1.5 7.0 9.2 7.6 4.4
1955 234 20.8 4.9 113 28.9 31.7 26.7 40.7 427( 585 89.2| 76.9| 380
1956 73.6 1240 118.4 110.7 136.6 116.6 129.1 169.8 | 173.2| 1553 | 201.3 | 192.1| 141.7
1957 165.0 130.2 157.4 175.2 164.6 200.7 187.2 1580 | 235.8} 253.8| 210.9| 239.4| 183.9
1958 202.5 164.9 180.7 196.0 175.3 171.5 191.4 200.2 | 201.2} 181.5| 152.3| 187.6| 184.8
1959 2{7.4 143.4 185.7 163.3 1720 1687 149.6 199.6 | 145.2| 111.4| 124.0| 125.0] 1590
1960 146.3 106.0 102.2 1220 119.6 110.2 121.7 134.1 127.2| 828/| 89.6| 85.6| 1123
1961 57.9 48.4 53.0 61.4 51.0 774 70.2 55.8 63.6) 37.7] 326( 399, 539




(48]

TABLE 2

Monthly and yearly smoothed Wolf numbers

Year I II 11 v v Vi VII VIII X X X1 XII |Average
1749 816 82.8 844) 863| 87.8] 887
1760 88.0 90.2 92.3 92.8 88.2 83.8 83.3 81.8 78,6| 754| 729| 69.6] 831
1751 66.8 64.2 59.5 54.9 51.7 49.0 46.2 45.0 46,47 475| 476 474 52.2
1752 47.2 46.4 453 46.4 41.8 48.0 48.2 478 46,0 444 422| 409 5.9
1753 38.2 36.2 36.7 35.8 34.2 324 28.8 25.8 228| 199) 183 17.4| 289
1754 174 15.8 13.9 13.0 12.7 123 126 13.4 140| 139{ 127 107 13.5
1755 9.2 8.4 8.4 8.8 8.5 8.9 9.7 9.6 9.4 941 101 {14 9.3
1756 11.5 11.4 1.3 10.8 10.7 106 10.3 10.9 1241 144 160| 174 12.2
1757 18.0 20.7 23.8 25.7 28.4 31.4 33.4 35.7 3191 40,6| 427| 444| 3.9
1758 46.5 46.8 47.2 48.4 47.7 47.2 48.0 48.2 47.7| 466| 456 46.0| 47.2
1759 46.5 48.1 50.1 51.5 52.7 53.4 54.8 56.2 58.0| 59.6| 61.1| 620 545
1760 62.5 63.3 62.8 61.8 62.0 62.7 63.0 64.4 660| 668| 688| 72.4| 647
1761 75.7 77.5 79.8 83.0 85.9 86.5 84.8 82.9 80.7| 788| 755| 71.7| 80.2
1762 68.3 64.8 62.5 60.4 59.0 59.9 61.7 60.5 583| 56.7| 553] 53.2| 60.1
1763 52.4 51.5 49.8 48.8 474 458 453 46.5 48.0| 483 4838 49.4 485
1764 418 46.9 45.4 43.0 408 37.8 34.9 32.0 20.9| 288|( 273, 25.8| 36.7
1765 25.3 25.2 24.6 23.6 225 2.4 204 19.3 19.4| 19.0{ 186 184 214
1766 16.4 144 12.8 12.0 11.2 11.2 12.1 13.5 145| 159] 17.2] 186 14.2
1767 20.6 229 26.0 29.3 32.9 36.4 38.9 4.5 4341 43.7( 46.4 499| 359
1768 53.0 55.4 57.8 60.6 63.5 67.4 70.7 715 724 754 77.2) 718] 668
1769 81.2 86.2 91.5 97.9 103.7 106.1 107.3 1149 1158 | 1145 1125 111.9] 103.4
1770 111.4 1109 109.3 105.2 102.3 101.2 98.0 91.1 857! 849| 889, 939| 985
1771 93.6 89.1 86.1 85.4 83.5 81.9 84.3 88.9 9041 905| 869 79.5| 86.7
1772 713 71.6 75.4 728 70.7 67.8 64.6 60.1 5831 56.7( 543 533! 65.7
1773 50.0 46.1 43.5 40.4 37.4 35.6 34.5 35.6 37.3| 380 389 89.3| 39.7
1774 38.9 38.2 374 35.6 34.2 31.9 28.9 244 19.8| 166| 13.3] 106] 275
1775 9.3 8.6 8.5 7.9 7.5 7.2 7.7 8.9 9.2 9.4 10.2] 10.7 8.8
1118 110 117 12.9 145 18.3 18,5 20.8 228 25.2| 296 356] 41.0] 21.7



TABLE 2 (continued)

Year 1 1I 111 v v VI VIl VIII 9.9 X X1 XII (Average

€11

| |
] i ! i
1777 4715 55.1 62.9 70.3 78.1 876 | 980 . 1066 | 1136° 1196 1282} 1386 922
1718 144.8 1484 151.9 156.3 158.5 156.5 1518 | 1515 153.2. 152.5' 148.4| 1419 1513
1779 139.0 1375 133.8 128.9 1270 | 1257 1241 | 1194 ' 11577 112.8; 109.4 | 106.9 | 1234

i 0 80.4i 792 795 89.2

1780 103.5 100.0 98.2 95.5 913 | 869 86 86.2 | 834

1781 79.4 78.0 75.4 71.5 69.8 69.1 66.2 62.8 ’ 606 58.8; 556, 51.0| 66.5
1782 47.0 44.5 42.9 42.0 40.4 38.7 374 | 363 | 360! 350y 332} 313! 387
1783 30.6 29.4 217 264 | 254 23.6 22.2 20.3 183 1694 155 141] 225
1784 12.3 108 100 9.7 9.8 10.0 9.9 96 | 95, 97i 105) 119, 103
1785 13.9 155 16.9 19.4 220 23.5 25.4 283 | 316 364 420| 463 26.7
1786 49.6 54.5 60.7 667 | 726 79.3 869 | 934 | 97511009 | 1044 107.9| 81.2
1787 1114 1153 119.2 123.0 J 125.9 129.5 132.2 | 1333 | 1366 138.0| 136.4) 437.8| 128.2
1788 140.7 1412 1 1404 139.1 136.6 132.8 129.9 | 4287 | 127.6]127.3| 128.3| 127.3| 1333
1789 124.9 122.5 1199 116.5 116.0 117.9 117.7 1473 | 116.4| 134.2 111.7| 1092 117.0
1790 106.0 103.4 101.2 99.6 97.2 92.5 88.6 84.6 81.0| 79.4| 718| 759 906
1791 749 734 70.8 69.4 67.9 66.9 66.0 65.4 654 64.5| 640 634 676
1792 62.2 61.9 62.2 61.8 61.3 60.5 60.0 59.5 58.8| 57.6| 56.2| 55.4| 59.8
1793 55.1 54.0 513 49.3 48.3 47.3 46.4 45.9 443 426 4L7| 414 473
1794 40.7 40.7 40.7 39.3 39.6 40.8 40.0 389 37.6| 36.2| 347| 327, 385
1795 30.5 28.7 28.2 28.0 258 22.7 21.3 20.6 204 | 20.8| 209| 20| 240
1796 20.2 19.8 19.0 18.8 11.8 16.6 15.7 14.6 13.3| 116| 99| 95| 156
1797 8.8 8.0 7.7 7.0 6.7 6.5 5.9 5.4 57| 59| 55| 47 6.5
1798 41 38 3.5 3.2 3.2 38 4.1 44 54| 58] 65| 73 46
1799 7.8 7.8 1.5 76 7.3 6.8 7.0 74 66| 59| 54| 59 6.9
1800 7.2 8.8 10.1 109 115 13.2 153 170 185| 20.4| 22.8| 243| 150
1801 25,2 26.6 283 30.0 324 33.7 34.9 36.5 37.7| 386 396} 40.7| 33.7
1802 41.8 42.8 441 454 451 450 45.1 45.4 454 | 439 43.2| 428| 44d
1803 42.4 4.7 40.8 41.2 425 434 42.9 426 43.2| 45| 45.7] 45.2 43.0
1804 44,3 44.0 44.6 45.3 46.1 470 48.1 48.6 486| 482( 47.9) 483 4638
1805 48.9 49.2 48.8 474 449 43.4 41.3 39.8 384| 37.2| 36.3| 32| 425
1806 342 33.2 31.7 30.7 30.0 287 210 25.1 230| 223| 20.5| 202y 2713
1807 18, 176 16.3 147 13.0 114 8.6 8.7 80f 74| 68{ 70| 6
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TABLE 2 (continued)

STt

Year I II1 111 v v vI viI VIII 1X X X1 XII |Average
, | ]
1839 79.6 80.8 85.4 879 87.5 86.5 847 ! 830 1 815| 80.7' 85| 81.9| 834
1840 80.7 76.6 714 66.9 64.6 63.6 608 | 560 525| 505| 49.4| 49.7| “61.9
1844 48.7 46.7 44.3 41.8 39.5 374 36.7 362 ! 355! 345 321| 289 385
1842 26.6 25.4 24,4 23.8 25.1 25.4 23.9 228 § 21.5| 202| 19.3| 187 230
1843 18.4 17.4 16 2 14.2 12.0 10.9 10.5 10.8 ] 15 12.2| 123| 11.7| 13.2
1844 11.9 12.9 13.5 14.3 14.6 14.6 15.7 | 176 ' 200, 227 25.7| 284 417
1845 29.9 30.7 319 33.7 35.7 38.5 406 | 415 426| 440| 450| 46.9| 384
1846 49.0 50.6 54.8 58.6 60.1 61.3 622 | 632 639| 63.8| 63.4| 649 59.7
1847 66.0 69.8 75.6 83.1 91.5 96.6 102.5 109.3 | 143.0| 116.6| 120.3 | 123.0| 973
1848 1283 131.6 128.7 124.2 1211 122.2 124.2 1249 | 1253 | 1246| 123.5| 120.8| 125.0
1849 116.5 110.9 107.7 104.9 101.7 98.5 92.6 81.5 852 822! 790! 777! 954
1850 75.6 740 73.7 73.4 71.5 68.1 66.4 67.0 66.9| 66.7| 67.2| 67.0| 69.8
1854 66.6 66.3 65.4 64.2 63.7 640 64.2 62.3 606 60.8| 60.9| 599| 63.2
1852 58.5 59.0 57.0 55.9 56.2 §5.3 53.1 50.9 489 47.2| 456 445 528
1853 44.3 45.0 45.2 440 41.9 39.9 38.0 35.9 343| 32.7| 313| 304| 386
1854 28.2 256 23.7 220 208 20.7 204 20.0 195| 184| 169| 156| 210
1855 14.2 129 114 10.4 9.2 7.5 6.2 5.4 45 38| 36 32 7.1
1856 3.3 3.6 3.9 3.9 3.8 4.4 4.9 5.5 5.8 6.2 7.6 9.3 5.2
1857 10.5 14.7 13.7 16.8 19.3 245 23.8 26.0 29.4) 327| 343| 360| 230
1858 38.6 417 44.8 485 51,5 53.6 56.7 60.7 643| 676| 74.7| 755 563
1859 789 826 85.9 879 90.8 93.2 93.7 93.7 940( 93.8( 939| 954( 903
1860 97.2 97.9 97.0 95.4 94.4 95.1 94.9 93.7 93.3| 945 936 00.6( 948
1861 88.1 85.8 84.5 83.1 80.3 77.8 71.2 76.7 73.7| 695| 679! 684| 7717
1862 67.7 66.7 65.3 63.7 62.5 60.8 58.5 57.6 582| 586| 57.6] 554| 61.1
1863 51.9 49.6 471 45.2 44.5 440 44.4 44.4 440 438| 430| 432 454
1864 44.8 46.0 46.6 46.6 47.2 47.5 46.6 45.9 44.4| 431 425) 413 452
1865 39.4 37.2 36.2 35.2 33.2 31.1 29.8 29.0 28.4| 27.2| 259 242 314
1866 228 210 10.4 18.7 17.9 16.8 15.0 12.4 9.9 8.7 7.8 6.7 147
1867 5.9 5.4 5.2 5.3 5.3 6.3 7.8 9.2 10.5| 126| 149) {74 8.8
1868 ¢ 9.3 215 24.2 276 317 35.5 39.2 42.9 458 471! 50.5] 569! 36.9
1869 614 64.6 68,0 69.4 70.4 124 746 716 843| 93.8] 101.7| 1058 786
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TABLE 2 (continued)

Year I I 11 v v VI VI VIII X X XI XII |Average
1870 110.0 116.2 1216 1275 134.0 138.0 139.6 140.5 | 1402 139.6| 1385 135.4| 131.8
1874 1323 129.3 125.1 120.4 1183 112.9 1108 110.3 | 107.8| 103.0| 989| 98.0| 113.8
1872 98.9 98.3 99.0 101.0 101.9 101.9 102.0 1017 | 101.6| 1009 97.47 922} 99.7
1873 87.8 85.2 81.4 6.2 7.5 67.7 65.2 62.4 5841 544) 524} 520] 679
1874 51.8 51.5 50.4 4914 474 45.5 42,7 39.1 36.8( 36| 34.6| 32.7] 4314
1875 29.8 25.5 22.5 205 19.2 17.9 17.4 16.8 163 5.4 137 125{ 189
1876 11.7 11.6 147 120 118 1.4 1.7 11.9 108 106] $1.8] 4301 1.7
1877 134 126 12.7 12.7 12.6 12,5 1.4 10.4 104 9.3 8.0 7.4 11.0
1878 6.8 6.0 5.3 4.6 4.0 3.5 33 3.9 2.4 23 24 2.2 3.9
1879 25 3.2 3.7 4.2 5.0 5.7 6.9 9.0 109 4231 137} 458 7.
1880 17.7 19.8 23.9 27.6 29.7 31.3 32.8 34.4 36.8| 395| 416| 436| 316
1881 410 49.7 49.6 49.9 5.8 53.5 54.6 55.6 57.0| 59.5| 622 624| 544
1882 60.4 58.4 57.9 57.8 58.9 59.9 60.3 60.0 584 | 56,5 546 545! 584
1883 573 59.0 59.0 59.8 60.9 62.3 65.0 67.9 71.4| 730| 742| 746| 654
1884 72.4 I 72.4 71.3 67.8 64.6 61.4 58.8 56.6| 54.2| 53.6| 552 633
1885 571 574 56.2 54.9 54.4 53.2 51.6 49.2 476 474 452 414 513
1886 37.2 34.3 32.2 30.2 215 25.8 24.6 23.2 205 16,7| 147 13.8( 25.1
1887 131 13.0 126 11.9 12.1 12.7 13.2 13.0 12.9| 13.0| 124| 15| 126
1888 10.3 8.6 7.9 7.8 7.8 7.3 6.3 5.8 5.8 5.8 5.6 5.3 7.0
1889 5.6 6.6 7.2 74 6.7 6.3 6.5 6.3 5.9 5.7 5.7 5.6 6.3
1890 5.5 5.0 5.0 5.8 6.6 7.0 7.4 8.6 98| 108 13.4| 16.5 8.4
1891 20.5 23,5 26.0 29.2 322 34.6 37.9 425 46.3| 50.0| 53.7| 56.5| 377
1892 58.4 62.0 65.2 66.4 | 68.1 71.0 73.2 3.4 739| 753| 763| 77.0| 700
1893 78.0 79.7 81.5 825 | 83.3 84.3 85.3 86.4 86.0| 852| 856| 86.7| 83.7
1894 87.9 86.2 83.2 82.5 81.6 794 | 7.2 75.6 75.3| 754| 738| 713 794
1895 67.7 65.2 64.8 64.2 63.5 635 | 625 | 607 599| 582| 554| 525| 61.5
1896 51.5 49.6 48.0 46.5 445 430 | 423 | 416 395| 380| 37.4| 352| 431
1897 32.9 32.0 3.2 304 28.3 26.6 258 | 257 26.3| 26.0| 256| 26.3| 284
1898 26.0 25.6 25.4 25.7 275 276 | 263 | 247 227| 21.9| 214| 203| 246
1899 20.4 19.4 174 15.4 13.2 122 | 147 | 115 11.2| 109] 11.3] 113 138
1900 10.7 10.5 10.6 10.6 10.4 9.9 | 9.4 8.2 7.6 68| 59| 54 88



2 (continued)
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TABLE 2 (continued)

Yeat 1 II 111 v v Vi VII VI X X X1 X711 |Average
1931 216 26.9 25.9 24,2 226 21.8 214 19.7 17.81 163 148| 148) 211
1932 14.8 14.2 13.3 126 12.2 11.4 11.2 117 120 1171 1071 9.4 124
1933 8.4 7.9 7.9 1.5 6.9 6.2 5.4 4.3 34 36| 46| 5.4 5.9
1934 5.7 6.3 6.6 6.7 7.2 8.1 9.4 10.6 11.9| 127 13.0] 15.0 9.4
1935 17.6 19.6 22.0 25.6 29.9 34.2 37.9 42.0 46.5] 513} 55.0) 57.2| 366
1936 59.0 62.2 65.9 68.8 72,5 71.2 82.6 87.8 903 92.4| 96.1( 101.2] 796
1937 107.6 113.5 116.7 119.2 119.0 115.8 113.0 111.2 | 110.9) 11061} 1108 109.8] 113.2
1938 109.3 109.2 107.9 106.3 107.1 109.4 108.8 106.3 | 103.6| 103.0| 103.0} 1028] 106.4
1939 1011 96.9 97.4 97.9 95.2 90.9 87.6 85.5 85,5| 843| 79.6] 7631 89.8
1940 74.2 73.0 74 67.8 66.0 66.7 67.6 66.8 64.6] 6191 59.7| 57.6| 66.4
1941 50.6 54.7 52.8 52.4 51.2 49.0 47.0 47.0 476| 48.4| 502 47.8] 50.5
1942 43.7 414 36.5 33.3 31.8 31.0 29.6 21.7 256| 23.0] 214| 205| 304
1943 20.1 19.9 19.6 18.8 17.5 16.5 16.0 14.4 126 108! 92] 86| 153
1944 8.2 7.1 7.8 8.4 8.8 9.2 10.2 11.3 123 140 165 19.0| 114
1945 219 23.8 25.1 284 31.7 33.4 34.3 38.6 439 481 524 56.01 36.4
1946 60.6 67.0 729 76.8 81.4 88.6 95.3 100.2 | 104.3| 1096 117.6| 126.2 91.7
1947 131.7 136.8 143.4 149.0 151.8 151.7 151.2 1489 | 145.5| 145.7 | 146.2| 1453 145.6
1948 1448 142.8 140.5 138.2 135.8 1353 136.6 1414 | 447.71 148.5] 143.9| 139.2] 141.2
1949 136.6 1345 133.2 133.0 1348 136.0 1344 1300 | 124.4) 1210} 1196} 118.0] 1296
1950 1150 111.9 106.4 99.5 92.9 86.6 82.2 79.0 753| 722 M.4| T72.2) 887
1951 1.7 69.5 69.8 70.7 70.2 69.8 68.6 66.3 6331 59.2| 53.0| 46.8( 649
1952 43.2 420 39.5 36.0 33.6 319 30.8 29.4 28.2| 276} 274 26.0; 330
1953 241 21.6 19.9 189 17.4 15.2 128 116 11.4] 104| 88| 74( 150
1854 6.4 5.6 4.2 3.4 3.7 4.2 5.4 7.2 78] 79| 95| 120 6.4
1955 14.2 16.4 19.5 23.4 28.8 35.1 40,4 46.5 55.5| 64.4{ 73.0} 81.0( 415
1956 88.8 98.5 109.3 118.7 127.4 136.9 145.5 1496 | 154.5| 155.8| 159.6} 164.3| 133.8
1957 170.2 172.2 1743 181.0 185.5 187.9 191.4 1944 | 197.3]| 199.5( 200.8| 200.1 | 187.9
1958 199.0 200.9 2043 196.8 191.4 186.8 185.2 1849 | 183.8| 182.2| 180.7| 180.5| 189.5
1959 178.6 176.9 174.5 169.2 165.1 161.4 155.8 1513 | 1463 141.1 ] 137.2} 1325} 157.5
1860 1289 1250 [ 1246 1198 1170 113.9 108.4 101.9 97.2; 926 87.2| 82.9| 1080




Quarterly Wolf numbers

TABLE

3

Year I ' I IIX v Year 1 | I I I1I v

1749 63.5 74.1 79.0 | 106.4 | 1803 43.4 354 426 54.1
1750 79.5 92.8 93.2 68.1 1804 47.2 39.9 420 611
1751 529 95.9 49.9 31.9 1805 52.2 39.0 416 36.2
1752 520 52.9 483 41.4 | 1806 338 26.6 26.8 253
1753 406 35.6 29.7 17.2 1807 113 153 10.1 35
1754 1.6 204 13.14 13.8 1808 1.5 1314 88 9.2
1755 9.4 2.2 99 16.8 | 1809 5.8 4.1 03 0.0
1756 83 116 13 13.6 i810 0.0 0.0 0.0 0.0
1757 205 270 38.7 436 1811 0.0 0.0 30 2.7
1758 46.2 546 48.4 41.2 1812 4.6 0.8 74 73
1759 46.4 48.7 66.5 543 § 1813 44 1.1 140 19.6
1760 67.2 59.5 67.6 571 1814 13.3 14.8 9.6 180
1761 80.6 92,7 95.3 728 § 1815 25.9 324 381 452
1762 54.1 59.1 56.7 74.8 § 1816 56.3 48.9 36.6 41.5
1763 40.7 33.8 49.6 56.2 1817 63.5 29.2 439 276
1764 532 36.2 29.4 26.6 1818 29.0 413 28.5 228
1765 25.0 20.7 242 13.7 1819 19.0 249 241 21.7
1766 19.9 1.9 3.9 10.0 1820 16.8 19.8 17.2 8.9
1767 335 320 35.1 50.7 1821 10.5 4.2 3.9 7.7
1768 55.3 659 64.7 93.4 1822 5.7 6.9 33 0.4
1769 67.5 §8.2 | 129.2 | 1395 || 1823 0.2 0.0 0.2 6.8
1770 | 108.9 681 | 1135 | 112.7 1824 10.8 7.4 13 8.7
17711 430 | 1124 759 95.1 1825 143 11.5 240 18.4
1772 74.3 62.4 61.3 67.7 1826 10.9 312 37.0 52.7
1773 43.9 34.1 23.2 36.8 1827 46.6 530 48.7 50.5
1774 56.0 40.9 10.7 14.6 1828 60.7 82.7 60.4 46.2
1775 5.3 9.1 40 95 1829 54.9 78.8 74.0 60.4
1776 13.2 17.3 13.7 35.0 1830 69.6 79.5 522 826
1777 402 822 | 1077 | 136.6 1831 63.7 420 46.0 30.5
1778 1502 | 1852 | 1549 | 137.2 1832 472 316 10.3 210
1779 1326 | 1329 | 1220 | 116.0 || 1833 12.7 5.6 8.1 7.8
1780 88.7 96.7 88.5 65.2 1834 9.0 8.0 8.1 299
1784 79.5 90.2 63.5 43.2 1835 17.2 464 73.2 90.9
1782 428 448 38.3 28.2 1836 981 | 1263 | 1065 ] 1548
1783 311 288 23.4 112 1837 166.1 | 1358 | 1310} 1202
1784 10.7 8.7 87 13.0 1838 123.5 | 1196 86.9 82.7
1785 7.8 20.9 29.4 38.2 1839 95.9 56.7 | 1162 744
1786 44.2 789 94.7 | 113.7 1840 74.8 61.2 64.2 526
1787 109.4 | 120.4 | 1408 | 1575 1841 279 55.2 35.4 290
1788 136.8 | 1256 { 1395 | 1221 1842 21.4 241 19.2 324
1789 1198 | 1223 | 110.7 | 119.7 1843 8.4 135 85 124
1790 | 108.9 92.7 779 80.1 1844 12.6 12.2 173 179
17H 69.6 71.7 60.2 64.9 1845 375 453 308 468
1792 61.7 66.2 549 57.3 1846 51.2 64.7 69.5 608
1793 55.5 521 378 45.6 1847 64.4 685 | 118 1430
1794 42.7 419 30.7 49.4 1848 1266 | 111.0 | 1240 | 1356
1795 24.6 222 17.4 208 § 1849 128.3 88.1 77.7 89.4
1796 20.5 19.8 15.6 8.2 1850 83.3 58.6 62.3 61.9
1797 75 15 53 52 1851 81.8 60.8 53.8 61.6
1798 6.4 0.4 1.8 80 J 1852 65.7 55.7 39.7 55.7
1799 12.0 9.1 0.7 53 g 1853 40.6 40.8 433 31.8
1800 10.0 9.6 17.3 20.0 | 1854 18.7 23.8 19.0 20.8
1801 28.7 31.4 35.7 40.2 § 1855 13.7 6.3 1.2 5.7
1802 45.2 440 499 41.0 § 1856 19 38 5.0 6.5




TABLE 3 (continued)

Year 1 11 111 Iv Year I II
1857 88| 188 27.2| 364 | 1910 | 264 | 143
1858 | 435] 414 | 640 700 | 1911 6.7 9.2
1859 | 87.2| 879 | 1026 | 976 || 1912 17 43
1860 | 895 | 957 | 1034 | 945 || 1913 1.9 03
1861 804 810 801 | 674 || 1914 28] 113
1862 | 574 | 674 | 67.5| 47.8 | 1915 | 347 4777
1863 | 57.4 [ 454 | 343 | 396 [ 1916 | 559 713
1864 | 57.0 | 447 | 46.0| 400 | 1917 | 805 | 101.2
1865 | 425 325) 3871 182 1918 | 778 | 722
1866 | 31.5| 157 9.8 82 (1919 | 647§ 837
1867 33 3.2 66| 16.0 | 1920 | 584 | 299
1868 | 193 | 315 356 | 628 | 1921 | 288 | 204
1869 | 576 ] 845 | 731 | 804 | 1922 | 310 83
1870 | 1172 | 157.2 | 140.7 | 141.3 | 1923 3.4 6.1
1871 | 1189 | 1332 | 97.8 ] 9849 | 1924 23| 187
1872 | 96.0 | 1065 | 1043 | 998 [ 1925 | 156 | 407
1873 | 973 | 563 | 609 | 507 || 1926 | 681 ] 588
1874 | 574 | 383 527 308 1927 | 814| 772
1875 | 235| 215 98| 134 [ 1928 | 808 | 830
1876 { 20.2 30| 11.3] 108 11929 | 611 | 610
1877 129 | 168 9.5 7.8 || 1930 | 49.8 | 34,
1878 5.7 41 1.8 1.9 | 1931 29.2 | 237
1879 05 45 81| 108 [ 1932 13| 474
1880 | 237 | 256 | 453 | 344 [ 1933 149 38
1881 470 | 519| 62.7] 554 | 1934 52| 126
1882 | 606 | 684 478 618 [1935 | 208 | 284
1883 | 501 | 636 597 | 81.4 1936 | 714 665
1884 | 884 | 646 569 439 1937 | 1150 1188
1885 | 548 | 706 520 316 {1938 | 101.4 | 1086
1886 | 377 | 338 229 7.4 [[1939 | 744 | 1095
1887 9.2 90| 17.4| 11.4 [[1940 | 644 | 663
1888 9.2 6.4 4.9 65 1194t | 455 ] 407
1889 5.4 44| 123 30 [11942 | 475 324
1890 3.7 26| 124 95 [(1943 | 228! 459
1891 15.4 | 366 486 | 41.9 [ 1944 5.4 26
1892 | 649 | 752 | 803 715 {1945 | 176 | 329
1893 | 712{ 870 | 986 | 829 [1946 [ 704 | 780
1894 | 734 | 939 | 807 | 640 {1947 | 1263 | 1717
1895 | 638 | 720 581 619 {1948 | 965 177.2
1896 | 460 | 402 | 445 363 [[1949 | 153.0 | 1250
1897 330 | 208| 325 187 (4950 | 102.0 | 101.1
1898 | 350 | 209 | 251 260 (1951 | 552 100.7
1899 156 | 141 83| 104 [1952 | 285 | 296
1900 105 | 144 7.0 59 [ 1953 135 | 207
1901 24 5.3 0.8 25 (1954 3.9 0.9
1902 59 1.4 36 92 |[ 1955 16.3 1 240
1903 129 { 190 | 226 430 | 1956 | 1053 | 121.3
1904 314 | 415| 463 ) 489 1957 | 150.9 | 180.2
1905 | 657 | 454 | 623 | Sos5 (1958 | 189.4 | 1809
1906 | 474 | 587 | 690 405 | 1959 | 1821 ) 168.0
1907 81.8| 453 | 630 58t [1960 | 1182 | 117.3
1908 339 | 488 723 394 [ 1961 523 | 633
1909 | 565 | 303 | 32 56.1
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Izv. GAO
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